ZrC Based Ceramics by High Pressure High Temperature SPS Technique

Article Preview

Abstract:

Zirconium carbide based materials were consolidated via spark plasma sintering and high-pressure high-temperature (HPHT) sintering methods. Fully dense ZrC-TiC compacts were produced by HTHP SPS technique at 1600-1700°C and were characterized by 370 GPa and 23.7 GPa values of Young’s modulus and Vickers microhardness, respectively. By the addition of 2 wt.% silicon nitride, the compacts of a full density were obtained at 1600°C; however, the further addition of Si3N4 resulted in a decrease in both density and hardness. Oxidation behavior in air of the ZrC-TiC and ZrC-TiC-Si3N4 compacts was explored by high temperature XRD method showing intensive oxidation at ~1000°C. Microstructural analysis certified that the addition of certain amount of Si3N4 increases the phase distribution homogeneity and contributes to the microstructure refinement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] Y. Yang, C.A. Dickerson, H. Swoboda, B. Miller, T.R. Allen, Microstructure and mechanical properties of proton irradiated zirconium carbide, J. Nuclear Mater. 378(3) (2008) 341-348.

DOI: 10.1016/j.jnucmat.2008.06.042

Google Scholar

[2] M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey, Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds, J. Eur. Ceram. Soc. 19(13-14) (1999) 2405-2414.

DOI: 10.1016/s0955-2219(99)00129-6

Google Scholar

[3] W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, (2014).

DOI: 10.1002/9781118700853

Google Scholar

[4] D.-L. Yung, S. Cygan, M. Antonov, L. Jaworska, I. Hussainova, Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites, Int. J. Ref. Met. Hard Mater. 61 (2016) 201-206.

DOI: 10.1016/j.ijrmhm.2016.09.014

Google Scholar

[5] D.-L. Yung, B. Maaten, M. Antonov, I. Hussainova, Oxidation of spark plasma sintered ZrC-Mo and ZrC-TiC composites, J. Ref. Met. Hard Mater. 66 (2017) 244-251.

DOI: 10.1016/j.ijrmhm.2017.03.019

Google Scholar

[6] I. Hussainova, N. Voltsihhin, E. Cura, S.-P. Hannula, Spark plasma sintering of ZrC-ZrO2 composites, Mater. Sci. Eng. A 597 (2014) 75-81.

DOI: 10.1016/j.msea.2013.12.058

Google Scholar

[7] R.B. Acicbe, G. Goller, Densification behavior and mechanical properties of spark plasma-sintered ZrC–TiC and ZrC–TiC–CNT composites, J. Mater. Sci. 48 (2012) 2388-2393.

DOI: 10.1007/s10853-012-7024-8

Google Scholar

[8] A. Nino, A. Sasago, S. Sugiyama, H. Taimatsu, Preparation of Si3N4-TaC and Si3N4-ZrC composite ceramics and their mechanical properties, Int. J. Ref. Met. Hard Mater. 61 (2016) 192-200.

DOI: 10.1016/j.ijrmhm.2016.09.017

Google Scholar

[9] S. Guo, Y. Kagawa, T. Nishimura, H. Tanaka, Elastic properties of spark plasma sintered (SPSed) ZrB2–ZrC–SiC composites, Ceram. Int. 34 (2008) 1811-1817.

DOI: 10.1016/j.ceramint.2007.06.010

Google Scholar

[10] A. R. Mallick, S. Chakraborty, D. Probal Kumar, Synthesis and consolidation of ZrC based ceramics: a review, Rev. Adv. Mater. Sci. 44(2) (2016) 109-133.

Google Scholar

[11] D.-L. Yung, I. Hussainova, M. Rodriguez, R. Traksmaa, Processing of ZrC-TiC composites by SPS, Key Eng. Mater. 674 (2016) 94-99.

DOI: 10.4028/www.scientific.net/kem.674.94

Google Scholar

[12] Y. Li, K. Hirokazu, G. Takashi, Spark plasma sintering of TiC–ZrC composites, Ceram. Int. 41(5) (2015) 7103-7108.

DOI: 10.1016/j.ceramint.2015.02.019

Google Scholar

[13] Sh.-Q. Guo, Densification of ZrB2-based composites and theirmechanical and physical properties: a review, J. Eur. Ceram. Soc. 29(6) (2009) 995-1011.

Google Scholar

[14] E.V. Kirilenko, A.I. Derii, V.Y. Petrovskii, Dependence of theresistivity of hot-pressed Si3N4–ZrC composites on their composition, Powder Metall. Metal Ceram. 48 (9-10) (2009) 560-568.

DOI: 10.1007/s11106-010-9168-x

Google Scholar

[15] Z. Ahmadi, B. Nayebi, M.S. Asl, M.G. Kakroudi, I. Farahbakhsh, Sintering behavior of ZrB2–SiC composites doped with Si3N4: a fractographical approach, Ceram. Int. 43(13) (2017) 9699-9708.

DOI: 10.1016/j.ceramint.2017.04.144

Google Scholar