Photoluminescence Analysis of Individual Partial Dislocations in 4H-SiC Epilayers

Article Preview

Abstract:

Configurations of the basal plane dislocations in 4H-SiC epitaxial layers are classified into two types, having typical combinations of ‘straight Si-core and straight C-core’ and ‘straight Si-core and curved C-core’ partial dislocations. The core species are determined by the photoluminescence images and observation of the moving Si-core partial dislocations by ultra-violet light illumination. Each partial dislocation was analyzed by photoluminescence spectroscopy. As the results, C-core partial dislocations have been found to have different peak wavelengths depending on the excitation power of the illumination. Also from the detailed analysis of individual partial dislocations, the curved C-core partial dislocations have been found to have different characters which may be originated from the mixture of different types of dislocations. It has been suggested that this model is possibly described by continuous connection of 30o and 90o dislocations which have different configurations of dangling bonds. The difference in photoluminescence peak wavelength might be explained by the structural difference.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

376-386

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] P. O. Å. Persson, L. Hultman, H. Jacobson, J. P. Bergman, E. Janzén, J. M. Molina-Aldareguia, W. J. Clegg, and T. Tuomi, Structural defects in electrically degraded 4H-SiC p+/n-/n+ diodes, Appl. Phys. Lett. 80 (2002) 4852.

DOI: 10.1063/1.1487904

Google Scholar

[2] M. Zhang, P. Pirouz, and H. Lendenmann, Transmission electron microscopy investigation of dislocations in forward-biased 4H-SiC p-i-n diodes, Appl. Phys. Lett. 83 (2003) 3320.

DOI: 10.1063/1.1620684

Google Scholar

[3] W. M. Vetter, J. Q. Liu, M. Dudley, M. Skowronski, H. Lendenmann, and C. Hallin, Dislocation loops formed during the degradation of forward-biased 4H-SiC p-n junctions, Mater. Sci. Eng. B 98 (2003) 220.

DOI: 10.1016/s0921-5107(03)00040-0

Google Scholar

[4] H. Jacobson, J. P. Bergman, C. Hallin, E. Janzén, T. Tuomi, and H. Lendenmann, Properties and origins of different stacking faults that cause degradation in SiC PiN diodes, J. Appl. Phys. 95 (2004) 1485.

DOI: 10.1063/1.1635996

Google Scholar

[5] M. Skowronski and S. Ha, Degradation of hexagonal silicon-carbide-based bipolar devices, J. Appl. Phys. 99 (2006) 011101.

DOI: 10.1063/1.2159578

Google Scholar

[6] K. Konishi, S. Yamamoto, S. Nakata, Y. Nakamura, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress, J. Appl. Phys. 114 (2013) 014504.

DOI: 10.1063/1.4812590

Google Scholar

[7] A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC p-i-n diodes, J. Appl. Phys. 119 (2016) 095711.

DOI: 10.1063/1.4943165

Google Scholar

[8] A. Agarwal, H. Fatima, S. Haney, and S. –H. Ryu, A new degradation mechanism in high-voltage SiC power MOSFETs, IEEE Electron Device Lett. 28 (2007) 587.

DOI: 10.1109/led.2007.897861

Google Scholar

[9] J. D. Caldwell, R. E. Stahlbush, E. A. Imhoff, K. D. Hobart, M. J. Tadjer, Q. Zhang, and A. Agarwal, Recombination-induced stacking fault degradation of 4H-SiC merged-PiN-Schottky diodes, J. Appl. Phys. 106 (2009) 044504.

DOI: 10.1063/1.3194323

Google Scholar

[10] P. Pirouz, J. L. Demenet, and M. H. Hong, On transition temperatures in the plasticity and fracture of semiconductors, Philos. Mag. A 81 (2001) 1207.

DOI: 10.1080/01418610108214437

Google Scholar

[11] J. Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, and H. Lendenmann, Structure of recombination-induced stacking faults in high-voltage SiC p-n junctions, Appl. Phys. Lett. 80 (2002) 749.

DOI: 10.1063/1.1446212

Google Scholar

[12] H. Jacobson, J. Birch, R. Yakimova, M. Syväjärvi, J. P. Bergman, A. Ellison, T. Tuomi, and E. Janzén, Dislocation evolution in 4H-SiC epitaxial layers, J. Appl. Phys. 91 (2002) 6354.

DOI: 10.1063/1.1468891

Google Scholar

[13] S. Ha, P. Mieszkowski, M. Skowronski, and L. B. Rowland, Dislocation conversion in 4H silicon carbide epitaxy, J. Cryst. Growth 244 (2002) 257.

DOI: 10.1016/s0022-0248(02)01706-2

Google Scholar

[14] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, and K. Arai, Direct observation of dislocations propagated from 4H-SiC substrate to epitaxial layer by X-ray topography, J. Cryst. Growth 260 (2004) 209.

DOI: 10.1016/j.jcrysgro.2003.08.065

Google Scholar

[15] W. Chen and M. A. Capano, Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles, J. Appl. Phys. 98 (2005) 114907.

DOI: 10.1063/1.2137442

Google Scholar

[16] Z. Zhang and T. S. Sudarshan, Basal plane dislocation-free epitaxy of silicon carbide, Appl. Phys. Lett. 87 (2005) 151913.

DOI: 10.1063/1.2093931

Google Scholar

[17] H. Tsuchida, M. Ito, I. Kamata, and M. Nagano, Formation of extended defects in 4H-SiC epitaxial growth and development of a fast growth technique, Phys. Status Solidi B 246 (2009) 1553.

DOI: 10.1002/pssb.200945056

Google Scholar

[18] N. A. Mahadik, R. E. Stahlbush, M. G. Ancona, E. A. Imhoff, K. D. Hobart, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, and F. J. Kub, Observation of stacking faults from basal plane dislocations in highly doped 4H-SiC epilayers, Appl. Phys. Lett. 100 (2012) 042102.

DOI: 10.1063/1.3679609

Google Scholar

[19] S. Hayashi, T. Naijo, T. Yamashita, M. Miyazato, M. Ryo, H. Fujisawa, M. Miyajima, J. Senzaki, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes, Appl. Phys. Express 10 (2017) 081201.

DOI: 10.7567/apex.10.081201

Google Scholar

[20] A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers, Philos. Mag. 97 (2017) 2736.

DOI: 10.1080/14786435.2017.1350788

Google Scholar

[21] S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes, Jpn. J. Appl. Phys. 57 (2018) 04FR07.

DOI: 10.7567/jjap.57.04fr07

Google Scholar

[22] A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Dependence of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p-i-n diodes, Jpn. J. Appl. Phys. 57 (2018) 061301.

DOI: 10.7567/jjap.57.061301

Google Scholar

[23] T. Tawara, S. Matsunaga, T. Fujimoto, M. Ryo, M. Miyazato, T. Miyazawa, K. Takenaka, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Injected carrier concentration dependence of the expansion of single Shockley-type stacking faults in 4H-SiC PiN diodes, J. Appl. Phys. 123 (2018) 025707.

DOI: 10.1063/1.5009365

Google Scholar

[24] R. E. Stahlbush, K. X. Liu, Q. Zhang, and J. J. Sumakeris, Whole-wafer mapping of dislocations in 4H-SiC epitaxy, Mater. Sci. Forum 556-557 (2007) 295.

DOI: 10.4028/www.scientific.net/msf.556-557.295

Google Scholar

[25] T. Fujimoto, T. Aigo, M. Nakabayashi, S. Sato, M. Katsuno, H. Tsuge, H. Yashiro, H. Hirano, T. Hoshino, and W. Ohashi, Time sequential evolutions of optically-induced single Shockley stacking faults formed in 4H-SiC epitaxial layers, Mater. Sci. Forum 645-648 (2010) 319.

DOI: 10.4028/www.scientific.net/msf.645-648.319

Google Scholar

[26] R. Hirano, H. Tsuchida, M. Tajima, K. M. Itoh, and K. Maeda, Polarization of photoluminescence from partial dislocations in 4H-SiC, Appl. Phys. Express 6 (2013) 011301.

DOI: 10.7567/apex.6.011301

Google Scholar

[27] A. O. Konstantinov, and H. Bleichner, Bright-line defect formation in silicon carbide injection diodes, Appl. Phys. Lett. 71 (1997) 3700.

DOI: 10.1063/1.120486

Google Scholar

[28] A. Galeckas, J. Linnros, and P. Pirouz, Recombination-enhanced extension of stacking faults in 4H-SiC p-i-n diodes under forward bias, Appl. Phys. Lett. 81 (2002) 883.

DOI: 10.1063/1.1496498

Google Scholar

[29] K. X. Liu, R. E. Stahlbush, S. I. Maximenko, and J. D. Caldwell, Differences in emission spectra of Si- and C-core partial dislocations, Appl. Phys. Lett. 90 (2007) 153503.

DOI: 10.1063/1.2721139

Google Scholar

[30] K. X. Liu, X. Zhang, R. E. Stahlbush, M. Skowronski, and J. D. Caldwell, Difference in emission spectra of dislocations in 4H-SiC epitaxial layers, Mater. Sci. Forum 600-603 (2009) 345.

DOI: 10.4028/www.scientific.net/msf.600-603.345

Google Scholar

[31] I. Kamata, X. Zhang, and H. Tsuchida, Photoluminescence of Frank-type defects on the basal plane in 4H-SiC epilayers, Appl. Phys. Lett. 97 (2010) 172107.

DOI: 10.1063/1.3499431

Google Scholar

[32] C. Kawahara, J. Suda, and T. Kimoto, Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging, Jpn. J., Appl. Phys. 53 (2014) 020304.

DOI: 10.7567/jjap.53.020304

Google Scholar

[33] M. Skowronski, J. Q. Liu, W. M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes, J. Appl. Phys. 92 (2002) 4699.

DOI: 10.1063/1.1505994

Google Scholar

[34] S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide p-i-n diodes, Appl. Phys. Lett. 83 (2003) 4957.

DOI: 10.1063/1.1633969

Google Scholar

[35] Y. Tokuda, T. Yamashita, I. Kamata, T. Naijo, T. Miyazawa, S. Hayashi, N. Hoshino, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Structural analysis of double-layer Shockley stacking faults formed in heavily-nitrogen-doped 4H-SiC during annealing, J. Appl. Phys. 122 (2017) 045707.

DOI: 10.1063/1.4996098

Google Scholar

[36] P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Dislocations, third ed., Cambridge University Press, Oxford, (2017).

Google Scholar

[37] J. Nishio, A. Okada, C. Ota, and M. Kushibe, presented in DRIP XVIII, Berlin (2019) P-18.

Google Scholar

[38] J. Yang, S. Izumi, R. Muranaka, Y. Sun, S. Hara, and S. Sakai, Reaction pathway analysis for differences in motion between C-core and Si-core partial dislocation in 3C-SiC, Mech. Eng. J. 2 (2015) 15-00183.

DOI: 10.1299/mej.15-00183

Google Scholar