Synthesis and Characterization of 0.9PMN-0.1PT Powders by the Use of a Modified Columbite Precursor

Article Preview

Abstract:

The complex perovskite compound 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 is one of the most promising relaxor ceramic because the addition of lead titanate increases Tm by about 5°C/mol% from intrinsic Tm value for pure PMN (near –7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb2O6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for 1mol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 498-499)

Pages:

642-647

Citation:

Online since:

November 2005

Export:

Price:

[1] Y.H. Chen, K. Uchino, M. Shen and D. Viehland, J. Appl. Phys. 90 3 (2001), pp.1455-1458.

Google Scholar

[2] V. Koval and J. Briancin, Ceramics-Silikáty 47 1 (2003), pp.8-12.

Google Scholar

[3] R. Yimnirun, S. Ananta, E. Meechoowas and S. Wongsaenmai, Phys. D: Appl. Phys. 36 (2003), pp.1615-1619.

DOI: 10.1088/0022-3727/36/13/329

Google Scholar

[4] N. Takesue; Y. Fuji and H. You, Ferroelectrics 270 (2002), p.1335.

Google Scholar

[5] R. Zhang, S. Peng, D. Xido, Y. Wang, B. Yang, J. Zhu, P. Yu and W. Zhang, Cryst. Res. Techolog. 33 5 (1998), pp.827-832.

Google Scholar

[6] O. Noblanc, P. Gaucher and G. Calvarin, J. Appl. Phys. 79 8 (1996), pp.4291-4297.

Google Scholar

[7] J. Kelly, M. Leonard, C. Tantigate and A. Safári, J. Am. Ceram. Soc. 80 4 (1997), pp.957-964.

Google Scholar

[8] B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev and E. Suard, Phys. Ver. B, 65 (2001), pp.024104-8.

Google Scholar

[9] S.L. Swartz and T.R. Shrout, Mat. Res. Bull. 17 (1982), p.1245.

Google Scholar

[10] M. Lejeune and J.P. Boilot, Ceram. Intern. 2 8 (1982), p.119.

Google Scholar

[11] D.S. Paik and S. Komarneni, J. Mater. Science 34 (1999), pp.2313-2317.

Google Scholar

[12] M. Villegas, C. Moure, P. Durán, J.F. Fernandez, Z. Samardzija and M. Kosec, Key Eng. Mat. 132-136 (1997), pp.1076-1079.

Google Scholar

[13] A.A. Cavalheiro, S.M. Barrionuevo, M.A. Zaghete, M. Cilense and J. A Varela, Mater. Sci. Forum 204-206 (2003), p.785.

Google Scholar

[14] M. Villegas and A.C. Caballero, J. Mater. Res. 14 3 (1999), pp.891-897.

Google Scholar

[15] A.A. Cavalheiro, M.A. Zaghete, C.O. Paiva-Santos and J.A. Varela, J. Mater. Res. 5 4(2002), pp.399-404.

Google Scholar

[16] A.A. Cavalheiro, M.A. Zaghete, C.O. Paiva-Santos, M. Cilense and J.A. Varela, Bol. Esp. Ceram. Vídrio 41 2 (2002), pp.265-270.

Google Scholar

[17] J.C. Bruno, A.A. Cavalheiro, M.A. Zaghete, M. Cilense and J. A Varela, Submitted to Mater. Chem. Phys.

Google Scholar

[18] M.P. Pechini, U.S. Patent # 3. 330. 697, July 11, (1967).

Google Scholar

[19] H.M. Rietveld, J. Appl. Cryst. 10 (1969) 65.

Google Scholar

[20] D.B. Wiles and R.A. Young, J. Appl. Cryst. 15 (1982) 430.

Google Scholar

[21] R.A. Young, A.C. Larson, C.O. Paiva-Santos, User's Guide to Program DBWS-9807 for Rietveld Analysis. School of Physics, Georgia Inst. of Tech. Atlanta, GA30332, (1998).

Google Scholar

[22] A.A. Cavalheiro, M.A. Zaghete, J.A. Varela,M. Villegas and J.F. Fernàndez, Ferroelectrics 268 (2002), pp.315-320.

Google Scholar