Diffusion Bonding of Magnesium, Zirconium and Titanium as Implant Material

Article Preview

Abstract:

Titanium, zirconium and magnesium alloys are considered to be biocompatible, and can be used as implants such as hip ball and sockets and to make medical equipments. Biomaterials with hybrid structures in some applications utilizing the beneficial properties of different metals together are considered potential implant materials. Therefore, in this study, experimental trials were attempted to bond pure magnesium, AM60 (6 wt% Al-0.27 wt% Mn), and AZ31 (3 wt% Al-1 wt% Zn) alloys to pure zirconium and Ti6Al4V (6 wt% Al-4 wt% V) alloy to experimentally evaluate the forming bimetallic structures by diffusion bonding technique by vacuum hot pressing. SEM analysis showed the presence of a significant diffusion zone and a presence of diffusion bonding in some metallic couples. It may be suggested that novel hybrid implant materials, composed of diffusion couples of magnesium, zirconium and titanium alloys may emerge in the future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Pages:

417-420

Citation:

Online since:

May 2007

Export:

Price:

[1] R. Cordingley, L. Kohan, B. Ben-Nissan and G. Pezzotti: Journal of the Australasian Ceramic Society, Vol. 39 (2003), 20-28.

Google Scholar

[2] P. Gehrke, D. Wolf, A. Scarano, A. Piattelli, J. Kielhorn and N. Saynor: European Association for Osseointegration, Paris, France (2004).

Google Scholar

[3] C. Leyens and M. Peters in: Titanium and Titanium Alloys, Wiley-VCH Verlag, Germany (2003).

Google Scholar

[4] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen: Biomaterials, Vol. 26 (2005), pp.3557-3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[5] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias: Biomaterials, Vol. 27 (2006), pp.1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[6] B. Denkena, F. Witte, C. Podolsky and A. Lucas: Proc. of 5th Euspen Int. Conference (2005).

Google Scholar

[7] F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann and H. Windhagen: Biomaterials 27 (2006), 1013-1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[8] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung and A. Haverich: Heart, Vol. 89 (2003),. 651-656.

Google Scholar

[9] P. Zartner, R. Cesnjevar, H. Singer and M. Weyand: Catheterization and Cardiovascular Interventions, Vol. 66 (2005), 590-594.

DOI: 10.1002/ccd.20520

Google Scholar

[10] Y. Yandong and L. Qiang: Materials Science Forum, Vols. 488-489 (2005), 227-230.

Google Scholar

[11] H. Somekawa, H. Hosokawa, H. Watanabe and K. Higashi: Materials Science and Engineering, Vol. A339 (2003), 328-333.

Google Scholar

[12] H. Somekawa, H. Watanabe, T. Mukai and K. Higashi: Scripta Materialia, Vol. 48 (2003), 1249-1254.

DOI: 10.1016/s1359-6462(03)00054-x

Google Scholar

[13] L. Peng, L. Yajiang, G. Haoran and W. Juan: Materials Letters, Vol. 59 (2005), 2001-(2005).

Google Scholar

[14] K. Bhanumurthy, J. Krishnan, G.B. Kale and S. Banerjee: Journal of Nuclear Materials, Vol. 217 (1994), 67-74.

Google Scholar

[15] G.B. Kale, R.V. Patil and P.S. Gawade: Journal of Nuclear Materials, Vol. 257 (1998), 44-50.

Google Scholar