Synthesis of Magnesium Oxide Nanoparticles by Sol-Gel Process

Article Preview

Abstract:

Cubic shaped Magnesium oxide nanoparticles were successfully synthesized by sol-gel method using magnesium nitrate and sodium hydroxide at room temperature. Hydrated Magnesium oxide nanoparticles were annealed in air at 300 and 500°C. X-ray diffraction patterns indicate that the obtain nanoparticles are in good crystallinity, pure magnesium oxide periclase phase with (200) orientation. Morphological investigation by FESEM reveals that the typical sizes of the grown nanoparticles are in the range of 50-70nm. Powder composition was analyzed by the FTIR spectroscopy and the results confirms that the conversion of brucite phase magnesium hydroxide in to magnesium oxide periclase phase was achieved at 300°C.The Thermo-gravimetric analysis showed the phase transition of the synthesized magnesium oxide nanoparticles occurs at 280-300°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Pages:

983-986

Citation:

Online since:

October 2007

Export:

Price:

[1] J.E. Gary, B. Luan, J. Alloys Comp 88(2002) 336.

Google Scholar

[2] S. Nagaoka, K. Hamasaki, T. Yamashita, T. Komata, Jpn. J. Appl. Phys. 8 (1989) 1367.

Google Scholar

[3] A.N. Basit, H.K. Kim, J. Blachere, Appl. Phys. Lett. 73 (1998) 3941.

Google Scholar

[4] S.K. Shukla, G.K. Parashar, A.P. Mishra, P. Misra, B.C. Yadav, R.K. Shukla, L.M. Bali, G.C. Dubey, Sens. Actuators B 98 (2004) 5.

DOI: 10.1016/j.snb.2003.05.001

Google Scholar

[5] W.Y. Hsu, R. Raj, Appl. Phys. Lett. 60 (1992) 3105.

Google Scholar

[6] P. Yang, C. M. Lieber, Science 273 (1996) 836.

Google Scholar

[7] A. Bhargava, J.A. Alarco, I D R. Mackinnon, D. Page, A. Iiyushechkin, Mater. Lett. 34 (1998) 33.

Google Scholar

[8] Y. S. Yuan, M.S. Wong, S. S. Wang, J. Mater. Res. 11 (1996) 8.

Google Scholar

[9] B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahender, B. Sreedhar, J. Am. Chem. Soc. 126 (2004) 3396.

Google Scholar

[10] W. Richard, S. Li, C. Decker, O. Davidson, V. Koper, A. Zaikovski, A. Volodin, T. Richer, K.J. Klabuynde, J. Am. Chem. Soc. 122 (2000) 4921.

Google Scholar

[11] D. K. Fork, K. Nashimoto, T.H. Geballe, J. Appl. Phys. Lett. 60 (1922) 1621.

Google Scholar

[12] L. Hao, C. Zhu, X. Mo, W. Jiang, Y. Hu, Y. Zhu and Z. Chen, Inorganic chemistry comm. 6(2003) 229-232.

Google Scholar