Functionally Graded Thermal Barrier Coatings with Improved Reflectivity and High-Temperature Capability

Article Preview

Abstract:

Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bondcoat and a ceramic, heat isolative topcoat. In modern TBCs the ceramic topcoat is further divided into layers with different functions. One example is the double layer system in which conventional yttria stabilized zirconia (YSZ) is used as bottom and new materials as pyrochlores or perovskites are used as topcoat layers. These systems demonstrated an improved temperature capability compared to standard YSZ. Examples of such systems will be shown. In modern gas turbines the increased temperatures and gas pressures lead to an increased fraction of radiative heat flow. Coatings with increased reflectivity can be used to avoid the direct heating of the metallic substrates by this radiation. An effective method to produce such coatings is suspension plasma spraying. These reflective coatings are deposited on top of the TBC system and will lead to a further grading and improved performance of the coating.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Pages:

73-78

Citation:

Online since:

October 2009

Export:

[1] J.H. Kim , M.C. Kim and C.G. Park: Surf. Coat. Technol. Vol. 168 (2003), pp.275-280.

Google Scholar

[2] R. Vaßen, F. Traeger and D. Stöver: Int. J. Appl. Ceram. Technol. Vol. 1.

Google Scholar

[4] (2004), pp.351-61.

Google Scholar

[3] X.Q. Cao, R. Vassen, F. Tietz and D. Stoever: J. Euro. Ceram. Soc. Vol. 26 (2006), pp.247-251.

Google Scholar

[4] S. Rangaraj and K. Kokini: Acta Mater. Vol. 51 (2003), pp.251-267.

Google Scholar

[5] W. Ma, M. O. Jarligo, D. E. Mack, D. Pitzer, J. Malzbender, R. Vaßen and D. Stöver: submitted to the Journal of Thermal Spray Technologies (2008).

DOI: 10.1007/s11666-008-9239-4

Google Scholar

[6] R. Vassen, X. Cao, F. Tietz; Basu and D. Stöver: J. Am. Ceram. Soc. Vol. 83 (1999) pp.2023-28.

Google Scholar

[7] R. Vaßen, G. Pracht and D. Stöver: in Proceedings of the 2002 International Thermal Spray Conference.

Google Scholar

[8] R. Vaßen, G. Barbezat and D. Stöver, in: Materials for Advanced Power Engineering, edited by J. Lecomte-Becker, M. Carton, F. Schubert, P.J. Ennis, (2002).

Google Scholar

[9] R. Vaßen, X.Q. Cao and D. Stöver: in Ceramic Engineering and Science Proceedings, (2001).

Google Scholar

[10] C. M. Spuckler: in Proceedings of the 28th International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, (2008).

Google Scholar

[11] V. Debout, F. Enguehard, A. Meillot, P. Abélard, E. Bruneton and P. Fauchais: in Proceedings of the 2006 International Thermal Spray Conference.

DOI: 10.31399/asm.cp.itsc2006p0525

Google Scholar

[12] J.I. Eldridge, C.M. Spuckler, K.W. Street, J.R. Markham: Ceram. Eng. Sci. Proc. Vol. 23(2002), pp.7417-429.

Google Scholar

[13] A. Stuke, R. Carius, J. -L. Marquéz, G Mauer, M. Schulte, D. Sebold, R. Vaßen and D. Stöver: 31st International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, Ceramic Engineering Science Proceeding (2007).

DOI: 10.1002/9780470339510.ch11

Google Scholar

[14] H. Kaßner, A. Stuke, R. Vaßen and D. Stöver: in Proceedings of the 2008 International Thermal Spray Conference.

Google Scholar

[15] A. Stuke, H. Kaßner, J. -L. Marqués, R. Carius, R. Vaßen and D. Stöver: submitted to the International Journal of Applied Ceramics Technology (2008).

Google Scholar

[16] H. Kassner, R. Siegert, D. Hathiramani, R. Vaßen and D. Stöver: J. Therm. Spray Technol. Vol. 17 (2008), p.115.

Google Scholar

[17] F. Traeger, R. Vassen, K-H. Rauwald and D. Stöver: Adv. Eng. Mater. Vol. 5 (2003), pp.429-33.

Google Scholar

[18] F. Traeger, M. Ahrens, R. Vaßen, D. Stöver: Mater. Sci. Eng. A. Vol. 358 (2003), pp.255-65.

Google Scholar

[19] R. Vaßen, F. Traeger and D. Stöver: Proceedings of the 2003 International Thermal Spray Conference, pp.1573-1582.

Google Scholar