Enhanced Ductility in Ultrafine-Grained Al Alloys Produced by SPD Techniques

Article Preview

Abstract:

In this work ultrafine-grained (UFG) structure was successfully produced in the commercial Al 6061 and Al-30%Zn alloys using new modifications of two severe plastic deformation (SPD) techniques, namely equal channel angular pressing (ECAP) with parallel channels (PC) and high pressure torsion (HPT) with enhanced load. Variation of SPD processing regimes made it possible not only to perform strong grain refinement but also to modify the phase composition through the formation of grain boundary (GB) segregations and precipitations. This enabled to achieve a unique combination of high strength and ductility in the Al 6061 alloy and demonstrate super-ductility in the Al-30%Zn alloy, when elongation to failure exceeded 150% at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

321-332

Citation:

Online since:

November 2009

Export:

Price:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] M.J. Zehetbauer (Ed. ): Adv Eng Mater, Special Issue on Nanomaterials by Severe Plastic Deformation, Vol. 5 (2003).

Google Scholar

[3] Z. Horita (Ed. ) Proc. 3rd Int. Conf. on �anomaterials by Severe Plastic Deformation, (Trans Tech Publications LTD, Switzerland, 2006).

Google Scholar

[4] R.Z. Valiev, Yu. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: JOM Vol. 58 No. 4 (2006), p.33.

Google Scholar

[5] R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov: Mater. Sci. Eng. A Vol. 168, No. 2 (1993), p.141.

Google Scholar

[6] R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[7] E. Ma: JOM Vol. 58, No. 4 (2006), p.49.

Google Scholar

[8] Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, T.G. Langdon: Adv. Mater. Vol. 17 (2005), p.1599.

Google Scholar

[9] R.Z. Valiev: Nature Mater. Vol. 3 (2004), p.511.

Google Scholar

[10] R.Z. Valiev: Mater. Sci. Forum Vols. 584-586 (2008), p.22.

Google Scholar

[11] G.I. Raab: Mater Sci Eng A Vols. 410-411 (2005), p.230.

Google Scholar

[12] M. Yu. Murashkin, A.R. Kilmametov, and R.Z. Valiev: Phys. Metal. Metallogr. Vol. 106, No. 1, (2008), p.90.

Google Scholar

[13] J.R. Davis (ed): ASM Special Handbook. Aluminium and Aluminium Alloys (1993).

Google Scholar

[14] A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev: Acta Mater. Vol. 54, (2006), p.3933.

DOI: 10.1016/j.actamat.2006.04.025

Google Scholar

[15] R.Z. Valiev, M. Yu. Murashkin, A.R. Kilmametov, B.B. Straumal: to be submitted.

Google Scholar

[16] W.J. Kim, J.K. Kim, T.Y. Park, S.I. Hong, D.I. Kim, Y.S. Kim and J.D. Lee: Metall. Mater. Trans. Vol. 33A (2002), p.3155.

Google Scholar

[17] G. Nurislamova, X. Sauvage, M. Murashkin, R. Valiev: in Ultrafine Grained Materials IV. ed. By Y.T. Zhu, T.G. Langdon, Z. Horita et al. TMS 2006 Annual Meeting in San Antonio, Texas, USA March 12-16, 2006. pp.41-45.

Google Scholar

[18] A. Yu. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev: Mater. Sci. Eng. A Vol. 318 (2001) p.163.

Google Scholar

[19] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch and B. Baudelet: Acta Mater. Vol. 44 (1996), p.4705.

Google Scholar

[20] A.R. Kilmametov, G. Vaughan, A. R. Yavari, A. LeMoulec, W.J. Botta and R. Z. Valiev: Mater. Sci. Eng. A Vol. 503 (2009), p.10.

Google Scholar

[21] G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev: Phil. Mag. Lett. Vol. 88 (2008), p.459.

Google Scholar

[22] H.J. Roven, H. Nesboe, J.C. Werenskiold, T. Seibert: Mater. Sci. Eng. A Vols. 410-411 (2005), p.426.

Google Scholar

[23] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodson: Acta Mater. Vol. 56 (2008), p.2223.

Google Scholar

[24] R.Z. Valiev, M. Yu. Murashkin, E.V. Bobruk, and G.I. Raab: Mater. Trans. Vol. 50, No. 1 (2009), p.87.

Google Scholar

[25] T.G. Langdon: J. Mater. Sci. Vol. 41 (2006), p.597.

Google Scholar

[26] J.W. Cahn: J. Chem. Phys. Vol. 66 (1977), p.3667.

Google Scholar

[27] B.B. Straumal, O. Kogtenkova, and P. Zięba: Acta Mater. Vol. 56, (2008), p.925.

Google Scholar

[28] B.B. Straumal: Grain boundary phase transitions (Moscow: Nauka publishers, 2003), in Russian.

Google Scholar

[29] B.B. Straumal, A.A. Mazilkin, O.A. Kogtenkova, S.G. Protasova, and B. Baretzky: Phil. Mag. Lett. Vol. 87, (2007), p.423.

Google Scholar

[30] B.B. Straumal, A.S. Gornakova, O.A. Kogtenkova, S.G. Protasova, V.G. Sursaeva, and B. Baretzky: Phys. Rev. B Vol. 78 (2008), p.054202.

Google Scholar

[31] T.B. Massalski (ed. ) (1990) Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park, OH, pp.238-242.

Google Scholar

[32] B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, and M. Faryna: Acta Mater. Vol. 56 (2008), p.6123.

DOI: 10.1016/j.actamat.2008.08.021

Google Scholar

[33] Y.J. Gao, Y.J. Han: Mater. Sci. Forum. Vols. 475-479 (2005), p.3131.

Google Scholar

[34] B.B. Straumal, O.A. Kogtenkova, S.G. Protasova, A.N. Nekrasov, B. Baretzky: JETP Letters (2009) in press.

Google Scholar

[35] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater. Vol. 42 (1994), p.2467.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[36] H. Mehrer (ed. ): Diffusion in Solid Metals and Alloys. Landolt-Börnstein, Vol. 26 (Springer, Berlin etc., 1990).

Google Scholar

[37] I. Kaur, W. Gust, L. Kosma: Handbook of interphase and grain boundary diffusion (Ziegler press, Stuttgart, 1989).

Google Scholar