Thermal Properties of the FCC Al3Zr : First-Principles Study

Article Preview

Abstract:

Ab inito density functional theory (DFT) and density function perturbation theory (DFPT) have been applied to investigate the thermal properties of the face-center-cubic (fcc) Al3Zr alloy over a wide range of pressure and temperature. Phonon dispersions were obtained at equilibrium and strained configurations by density functional perturbation theory. Using the quasiharmonic approximation for the free energy, several interesting physical quantities such as thermal Grüneisen parameter, heat capacity at constant pressure and volume, thermal expansion coefficient and entropy, as well as adiabatic bulk modulus and isothermal bulk modulus, were calculated as a function of temperature and pressure, and the variation features of these quantities were discussed in details.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

313-319

Citation:

Online since:

May 2010

Export:

Price:

[1] Schumann S and Friedrich H, Mater. Sci. Forum 51 (2003) 419.

Google Scholar

[2] Schlapbach L and Zuttel A, Nature 414 (2001) 353.

Google Scholar

[3] Smola B and Stul´ıkov´a I, Mater. Sci. Eng. A 324 (2002) 113.

Google Scholar

[4] Lathabai S,Lioyd P G. Acta. Mater. 50(17) (2002) 4275.

Google Scholar

[5] Lee S,Utsunomiya A. Acta. Mater. 50(3) (2002) 553.

Google Scholar

[6] Maeng D Y,Lee J H,Hong S I. Mater. Sci. Eng. A 357 (2003)188.

Google Scholar

[7] Woei-Shyan Lee, Mater. Chem. and Phys. 113 (2009) 734.

Google Scholar

[11] J.D. Robson , P.B. Prangnell Mater. Sci. Eng. A 352 (2003) 240.

Google Scholar

[12] H.M. Flower, P.J. Gregson, Mater. Sci. Technol. 3 (1987)81.

Google Scholar

[13] Z.Y. Ma, R.S. Mishra, Mater. Sci. Eng. A 351 (2003) 148.

Google Scholar

[14] Ying-Jun Gao, Trans. Nonferrous Met. Soc. China 14 (2004) 922.

Google Scholar

[15] Dian-Wu Zhou, Jin-Shui Liu, Journal of Special Casting & Nonferrous Alloys (in chinese) 26 (2006) 2.

Google Scholar

[16] Shobhana Narasimhan, Phys. Rev. B 65 (2002) 064302.

Google Scholar

[17] A. Debernardi, Solid State Commun. 113 (2000) 1.

Google Scholar

[18] D. C. Wallace, Thermodynamics of Crystals (New York, 1972).

Google Scholar

[19] See, e. g., N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Tokyo, 1981).

Google Scholar

[20] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http: /www. pwscf. org.

Google Scholar

[21] P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.

Google Scholar

[22] C.L. Fu, and K.M. Ho, Phys. Rev. B28 (1983) 5480.

Google Scholar

[23] S. de Gironcoli, Phys. Rev. B 51 (1995) 6773.

Google Scholar

[24] http: /www. vlab. msi. umn. edu.

Google Scholar

[25] B. B. Karki and R. M. Wentzcovitch, Phys. Rev. B 61 (2000).

Google Scholar

[26] Zhongqing Wu, J. Geophys Res. 113 (2008) 06204.

Google Scholar

[27] Tao Sun, Koichiro Umemoto, Zhongqing Wu and R. M. Wentzcovitch, Phys. Rev. B78 (2008) 024304.

Google Scholar

[28] A. Deschamps, Y. Bre'chet, Mater. Sci. Eng. A251 (1998) 200.

Google Scholar

[29] A. Fleszar and R. Resta, Phys. Rev. B 34 (1986) 7140.

Google Scholar

[30] K. Kunk and P. Gomes Dacosta, Phys. Rev. B 32 (1985) (2010).

Google Scholar

[31] Zhiqiang Li and John S. Tse Phys. Rev. 61 (2001) 21.

Google Scholar

[32] B. B. Karki and R. M. Wentzcovitch Phys. Rev. B 61 (2000).

Google Scholar