Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight

Article Preview

Abstract:

TiO2 derived nanotubes were prepared by hydrothermal treatment of TiO2 (anatase) powder in 10 M NaOH aqueous solution. The crystalline structure, band gap, and morphology of the TiO2 nanotubes were determined by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Transmission Electron microscopy (TEM) and N2 adsorption (BET) at 77 K, respectively. It was observed that the surface area of the nanotubes was increased twelve times compared with TiO2 (anatase) powder. The results demonstrated that the photocatalytic activity of TiO2 nanotubes was higher than that of TiO2 (anatase) powder. The photocatalytic activity of the nanotubes was evaluated in presence of sunlight by degradation of aqueous nitrobenzene. Complete degradation of nitrobenzene was obtained in 4 hours using TiO2 nanotubes whereas 85% degradation was observed in case of TiO2 (anatase).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-74

Citation:

Online since:

July 2010

Export:

Price:

[1] A. Fujishjima and K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] R.J. Tayade, R.G. Kulkarni and R.V. Jasra: Indust. and Engin. Chem. Research Vol. 45 (2006), p.922.

Google Scholar

[3] R.J. Tayade, R.G. Kulkarni and R.V. Jasra; Indust. and Engin. Chem. Research Vol. 45 (2006), p.5231.

Google Scholar

[4] P.K. Surolia, M.A. Lazar; R.J. Tayade and R.V. Jasra; Indust. and Engin. Chem. Research Vol. 47 (2008), p.5847.

Google Scholar

[5] M. Gratzel: Nature Vol. 414 (2001), p.338.

Google Scholar

[6] M. Gratzel: J. Photochem. Photobiol., C: Photochem. ReV. Vol. 4 (2004), p.145.

Google Scholar

[7] S. Yangn and L. Gao: J. Am. Ceram. Soc. Vol. 87 (2004), p.1803.

Google Scholar

[8] H. Liu and L. Gao: J. Am. Ceram. Soc. Vol. 87 (2004), p.1582.

Google Scholar

[9] J.C. Yu, J.G. Yu, W.K. Ho; Z.T. Jiang and L.Z. Zhang: Chem. Mater. Vol. 14 (2002), p.3808.

Google Scholar

[10] M.I. Litter: Appl. Catal. B: Environ. Vol. 23(1999), p.89.

Google Scholar

[11] V. Brezova, A. Blazkova, L. Karpinsky, J. Groskova, B. Havlinova, V. Jorik, M. Ceppan: J. Photochem. Photobiol. A: Chem. Vol. 109, (1997), p.177.

Google Scholar

[12] S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani: Phys. Chem. Chem. Phys. Vol. 3 (2001), p.267.

Google Scholar

[13] A. Fuerte, M.D. Hernandez-Alonso, A.J. Maria, A. Martinez-Arias, M. Fernandez-Garcia, J.C. Conesa and J. Soria: Chem. Commun. Vol. 24 (2001), p.2718.

Google Scholar

[14] W. Choi, A. Termin, M.R. Hoffman: J. Phys. Chem. Vol. 98 (1994), p.13669.

Google Scholar

[15] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[16] N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl: Science Vol. 269 (1995), p.966.

DOI: 10.1126/science.269.5226.966

Google Scholar

[17] R. Tenne: Prog. Inorg. Chem. Vol. 50 (2001), p.269.

Google Scholar

[18] M. Nath, C.N.R. Rao: J. Amer. Chem. Soc. Vol. 123 (2001), p.4841.

Google Scholar

[19] C.N.R. Rao, M. Nath: Dalton Transactions Vol. 1 (2003), p.1.

Google Scholar

[20] P. Hoyer: Langmuir Vol. 12 (1996), p.1411.

Google Scholar

[21] F. Krumeich, H. -J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper: J. Amer. Chem. Soc. Vol. 121 (1999), p.8324.

DOI: 10.1021/ja991085a

Google Scholar

[22] R. Asahi, Y. Taga, W. Mannstadt: A. J. Freeman, Phys. Rev. B Vol. 61 (2000), p.7459.

Google Scholar

[23] A. Fujishima, T.N. Rao and D.A. Tryk: J. Photochem. Photobio. C Vol. 1 (2000), p.1.

Google Scholar

[24] S.Q. Liu and A.C. Chen: Langmuir Vol. 21 (2005), p.8409.

Google Scholar

[25] S.H. Oh, R.R. Finones, C. Daraio, L.H. Chen and S.H. Jin: Biomaterials Vol. 26 (2005), p.4938.

Google Scholar

[26] M. Adachi, Y. Murata, I. Okada and S. Yoshikawa: J. Electrochem. Soc. Vol. 150 (2003), p.488.

Google Scholar

[27] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nitrobenzene; Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA, 1990; available at http: / www. atsdr. cdc. gov/taxfaq. html (accessed Dec 1990).

DOI: 10.4135/9781412963855.n24

Google Scholar

[28] R. J. Tayade, P. K. Suroliya, R. G. Kulkarni and R. V. Jasra: Science and Technology of Advanced Materials Vol. 8 (2007), p.455.

Google Scholar

[29] B. D. Cullity and S. R . Stock: Elements of X-ray Diffraction, 3rd Ed. (Prentice Hall: Upper Saddle River, NJ, 2001).

Google Scholar

[30] M. Gratzel: Heterogeneous Photochemical Electron Transfer (CRC Press: Boca Raton, FL, 1988).

Google Scholar

[31] D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen and N. Ming: Chem. Mater. Vol. 18 (2006), p.547.

Google Scholar

[32] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie and H. Xu: J. Am. Chem. Soc. Vol. 125 (2003), p.12384.

Google Scholar

[33] D. Wang, F. Zhou, Y. Liu and W. Liu: Materials Letters Vol. 62 (2008), p.1819.

Google Scholar

[34] S. H. Lim, J. Luo, Z. Zhong, W. Ji and J. Lin: Inorg. Chem. Vol. 44 (2005), p.4124.

Google Scholar

[35] Q. Chen, W.Z. Zhou, G.H. Du and L.M. Peng: Adv. Mater. Vol. 14 (2002), p.1208.

Google Scholar

[36] D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh: J. Mater. Chem., Vol. 4 (2004), p.3370.

Google Scholar

[37] M. Qamar , C.R. Yoon, H. J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catalysis Today Vol. 131 (2008), p.3.

DOI: 10.1016/j.cattod.2007.10.015

Google Scholar

[38] M. A. Khan, H. -T. Jung and O-B. Yang: Chem. Phys. Letters Vol. 458 (2008), p.134.

Google Scholar