Ferroelectric and Magnetic Properties of Co Doping Bi6Fe2Ti3O18 Ceramics

Article Preview

Abstract:

In this paper, for the purpose of enhancement in the magnetic behavior, the five-layer Aurivillius phase structure Bi6Fe2-xCoxTi3O18 (BFCT-x, x = 0.0 ~ 2.0) ceramics were synthesized using the solid-state reaction method from a mixture of Bi2O3, Co2O3, Fe2O3, and TiO2 powders with different stoichiometric ratio. The microstructure, ferromagnetic and ferroelectric properties are investigated. The crystallographic structures of BFCT-x are determined to be the typical five-layer Aurivillius phase with a suggested structural transformation at heavy doping of Co ions. At room temperature, the remnant magnetization (2Mr) of BFCT-0.0, BFCT-0.6, BFCT-1.0 and BFCT-2.0 samples are 0.043 memu/g, 0.59 emu/g, 0.81 emu/g and 1.75 memu/g, respectively. The 2Mr, at first, gradually enhance and reach a greatest value of 0.81 emu/g at x = 1.0 then degrade again with the increasing of the ratio x. At room temperature, the samples have ferroelectricity, which the remnant polarization (2Pr) of the BFCT-0.0 , BFCT-0.6, BFCT-1.0 and BFCT-2.0 samples are 2.8 μC/cm2, 8.0 μC/cm2, 3.0 μC/cm2 and 7.2 μC/cm2 respectively. The 2Pr first increases, then decreases and increases again with Co doping. When x = 0.6, the 2Pr reaches a maximum value of 8.0 μC/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

142-145

Citation:

Online since:

February 2013

Export:

Price:

[1] B. Aurivillius, Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9, Arkiv Kemi. 1 (1949) 463-480.

Google Scholar

[2] H. Naganuma, J. Miura, S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films, Appl. Phys. Lett. 93 (2008) 052901-1-052901-3.

DOI: 10.1063/1.2965799

Google Scholar

[3] S. Dussan, A. Kumar, J.F. Scott, R.S. Katiyar, Magnetic effects on dielectric and polarization behavior of multiferroic heterostructures, Appl. Phys. Lett. 96 (2010) 072904-1-072904-3.

DOI: 10.1063/1.3327889

Google Scholar

[4] G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets, Sov. Phys. Usp. 25 (1982) 475-493.

DOI: 10.1070/pu1982v025n07abeh004570

Google Scholar

[5] J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3, Solid. State. Commun. 8 (1970) 1073-1074.

DOI: 10.1016/0038-1098(70)90262-0

Google Scholar

[6] R.S. Singh, T. Bhimasankaram, G.S. Kumar, S.V. Suryanarayana, Dielectric and Magnetoelectric properties of Bi5FeTi3O15, Solid. State. Commu. 91, (1994) 567-569.

DOI: 10.1016/0038-1098(94)90376-x

Google Scholar

[7] N.S. Almodovar, J. Portelles, O. Raymond, J. Heiras, J.M. Siqueiros, Characterization of the dielectric properties and alternating current conductivity of the SrBi5-xLaxTi4FeO18 (x=0, 0. 2) compound, J. Appl. Phys. 102 (2007) 124105-1-124105-7.

DOI: 10.1063/1.2824898

Google Scholar

[8] K.R.S.P. Meher, K.B.R. Varma, Bi4Ti3O12–5BiFeO3 Aurivillius intergrowth: Structural and ferroelectric properties, J. Appl. Phys. 106 (2009) 124103-1-124103-5.

DOI: 10.1063/1.3267160

Google Scholar

[9] A. Srinivas, M. Mahesh Kumar, S.V. Suryanarayana, T. Bhimasankaram, Investigation of dielectric and magnetic nature of Bi7Fe3Ti3O21, Mater. Resea. Bull. 34 (1999) 989-996.

DOI: 10.1016/s0025-5408(99)00093-8

Google Scholar

[10] X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Multiferroic properties of layer-structured Bi5Fe0. 5Co0. 5Ti3O15 ceramics, Appl. Phys. Lett. 95 (2009) 082901-1-082901-3.

DOI: 10.1063/1.3213344

Google Scholar

[11] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Crystal Physics, Diffraction, Theor. Gen. Crystallogr. 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar