Effects of Sm and Mn Co-Doping on Structural and Optical Properties of BiFeO3 Thin Films Prepared by Sol-Gel Technique

Article Preview

Abstract:

(Bi1-xSmx)(Fe0.95Mn0.05)O3 (x=0.00, 0.03 and 0.06) thin films were deposited on the quartz substrates by sol-gel technique. The results of X-ray diffraction patterns indicated all thin films had rhombohedral perovskite structure. Moreover, the Sm and Mn co-doping at A-and B-site of BiFeO3 resulted in the structural distortion. Scanning electron microscope measurements exhibited that the uniform surface morphology could be obtained by co-doping and the average grain size of the films decreased with increasing Sm content. Furthermore, the fundamental absorption edges of xBSFMO films showed a blue shift with the increase of Sm content which can be observed in transmittance spectra. The optical band gap of the thin films for x= 0.00, 0.03 and 0.06 can be expressed by (0.84x+2.62) eV, which is due to the Burstein-Moss effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

March 2015

Keywords:

Export:

Price:

* - Corresponding Author

[1] N.A. Spaldin, M. Fiebig, Science 309, 391 (2005).

Google Scholar

[2] Eerenstein W, Mathur ND, Scott JF, Nature 442, 759 (2006).

Google Scholar

[3] Cheong SW, Mostovoy M, Nature Mater. 6, 13 (2007).

Google Scholar

[4] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003).

DOI: 10.1126/science.1080615

Google Scholar

[5] R.E. Cohen, Nature 358, 136 (1992).

Google Scholar

[6] J. Chen, X. Xing, A. Watson, W. Wang, R. Yu, J. Deng, L. Yan, C. Sun, X. Chen, Chem. Mater. 19, 3598 (2007).

Google Scholar

[7] T. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007).

Google Scholar

[8] N. Shirtcliffe, S. Thompson, E.S. O'keefe, S. Appleton, C.C. Perry, Mater. Res. Bull. 42, 281 (2007).

Google Scholar

[9] N.A. Hill, J. Phys. Chem. B. 104, 6694-6709 (2000).

Google Scholar

[10] C. Blaauw, F. Woude, J. Phys. C: Solid State Phys. 6, 1422-1431 (1973).

Google Scholar

[11] Hurui Yan, Hongmei Deng, Pingxiong Yang, Junhao Chu. Materials Letters 111, 123-125 (2013).

Google Scholar

[12] Liu J, Fang L, Zheng F, Ju S, Shen M, Appl. Phys. Lett. 95, 022511 (2009).

Google Scholar

[13] G.S. Arya, R.K. Sharma, N.S. Negi, Materials Letters 93, 342 (2013).

Google Scholar

[14] G. L. Yuan and Siu Wing Or, J. Appl. Phys. 100, 024109 (2006).

Google Scholar

[15] Jian-Jun Gu, Guo-Liang Zhao, Fu-Wei Cheng, Jin-Rong Han, Li-Hu Liu, Physica B 406, 4401 (2011).

Google Scholar

[16] T.K. Subrmanayma, B. Srinivasulu Natdu, S. Uthnnaa, OPt. Mater. 13, 239-247 (1999).

Google Scholar

[17] Lin Peng, Hongmei Deng, Pingxiong Yang, Junhao Chu. Applied Surface Science 268, 149 (2013).

Google Scholar

[18] E. Burstein, Phys. Rev. 93, 632 (1954).

Google Scholar

[19] T. Moss, Proc. Phys. Soc. London, Sect. B 67, 775 (1954).

Google Scholar