Photo-Induced Charge Generation of TiO2 Nanotube Modified with Polymer Containing C60 under Irradiation of Visible Light and its Applications

Article Preview

Abstract:

Due to its excellent physical properties and inert chemical reaction activity of C60, it is possible to synthesize solution-processing polymer containing C60 utilizing the inclusive characteristics of polymer chain segment, and then to prepare organic/inorganic nanocomposites with enhanced some key properties. In order to harvest the visible light of TiO2 effectively the surface modification of TiO2 nanotube with polymer containing C60 was carried out in this study. A series of characterizations were performed by SEM (scanning electron microscopy), TEM (transmission electron microscopy), Fourier-Transform Infrared (FTIR) spectra, UV-Vis (Ultra-violet visible spectroscopy), XRD patterns analysis. The results showed that the UV-Vis of resulting nanocomposite was almost covered the whole region of visible light. The photoconductivity response to visible light with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate with casting method. The results indicated that the photoresponses of two kinds of polymer containing C60 to weak visible light emerged photo-switching behavior, its recoverability was also rapidly, and the photoresponse of TiO2 nanotube modified with two kinds of polymer containing C60 to weak visible light also changed greatly. This illustrated that the organic-inorganic nanocomposites showed good activities to weak visible light. Photocatalytic efficiency was examined by selecting typical organic pollutants, some good results were obtained. It may develop organic-inorganic nanocomposites with external stimuli response, photocatalyst, et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2263-2271

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] X. Li, G. Wang, L. Jing, W. Ni, H. Yan, C. Chen and Y. Yan, Chem. Commun. 52(2016)2533-2536.

Google Scholar

[2] J. Wu, H. Lu, X. Zhang, F. Raziq, Y. Qu and L. Jing, Chem. Commun. 52(2016)5027-5029.

Google Scholar

[3] R. Tjandra, G. Li, X. Wang, J. Yan, M. Li and A. Yu, RSC Adv. 6(2016)35479–35485.

Google Scholar

[4] H. Huang, Y. Yang, L. Chen, Y. Wang, S. Huang, J. Tao, X. Ma, T. Hasan, Y. Li, Y. Xu and B. Su, Nanoscale. 8(2016)10928–10937.

Google Scholar

[5] Y. Qin, J. Zhang, Y. Wang, X. Shu, C. Yu, J. Cui, H. Zheng, Y. Zhang and Y. Wu, RSC Adv. 6(2016)47669–47675.

DOI: 10.1039/c6ra08891k

Google Scholar

[6] P. Heinrichova, P. Dzik, J. Tkacz, M. Vala and M. Weiter, RSC Adv. 6(2016)66705–66711.

DOI: 10.1039/c6ra09357d

Google Scholar

[7] Y. Zhang, B. Tang, Z. Wu, H. Shi, Y. Zhang and G. Zhao, Green Chem. 18(2016)2424–2434.

Google Scholar

[8] J. Yang, Y. Jiang, L. Li, E. Muhire and M. Gao, Nanoscale. 8(2016)8170–8177.

Google Scholar

[9] W. Mao, X. Lin, W. Zhang, Z. Chi, R. Lyu, A. Cao and L. Wan, Chem. Commun. 52(2016)7122-7125.

Google Scholar

[10] X. Li, H. Lin, X. Chen, H. Niu, J. Liu, T. Zhang and F. Qu, Phys. Chem. Chem. Phys. 18(2016)9176-9185.

Google Scholar

[11] H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng and W. Yang, J. Mater. Chem. A. 4(2016)6276–6281.

Google Scholar

[12] Z. Zhao, X. Zhu, M. Zuo, J. Xu and Y. Wang, Cryst. Eng. Comm. 18(2016)1636–1644.

Google Scholar

[13] A. Tiwari, I. Mondal, S. Ghosh, N. Chattopadhyayc and U. Pal, Phys. Chem. Chem. Phys. 18(2016)15260-15268.

Google Scholar

[14] D. Zheng, Y. Xin, D. Ma, X. Wang, J. Wu and M. Gao, Catal. Sci. Technol. 6(2016)1892–(1902).

Google Scholar

[15] S. A. Bakar and C. Ribeiro, RSC Adv. 6(2016)36516–36527.

Google Scholar

[16] K. Zheng, X. Zheng, F. Yu and J. Ma, RSC Adv. 6(2016)3625–3631.

Google Scholar

[17] M. Myilsamy, M. Mahalakshmi, N. Subha, A. Rajabhuvaneswari and V. Murugesan, Visible light responsive mesoporous graphene–Eu2O3/TiO2 nanocomposites for the efficient photocatalytic degradation of 4-chlorophenol, RSC Adv. 6(2016)35024–35035.

DOI: 10.1039/c5ra27541e

Google Scholar

[18] S. Chauhan and D. F. Watson, Phys. Chem. Chem. Phys. 18(2016) 20466-20475.

Google Scholar

[19] A. Li, T. Wang, X. Chang, W. Cai, P. Zhang, J. Zhang and J. Gong, Spatial separation of oxidation and reduction cocatalysts for efficient charge separation: Pt@TiO2@MnOx hollow spheres for photocatalytic reactions, Chem. Sci. 7(2016)890–895.

DOI: 10.1039/c5sc04163e

Google Scholar

[20] S. Wang, I. S. Cole and Q. Li, Chem. Commun. 52(2016)9208-9211.

Google Scholar

[21] D. Punnoose, C. S. S. Pavan Kumar, H. W. Seo, M. Shiratani, A. E. Reddy, S. S. Rao, C. V. Thulasi-Varma, S. Kim, S. Chung and H. Kim, New J. Chem. 40(2016)3423—3431.

DOI: 10.1039/c5nj02947c

Google Scholar

[22] C. Haw, W. Chiu, S. A. Rahman, P. Khiew, S. Radiman, R. A. Shukor, M. A. A. Hamidc and N. Ghazal, New J. Chem. 40(2016)1124-1136.

Google Scholar

[23] B. Yuan, Y. Long, L. Wu, K. Liang, H. Wen, S. Luo, H. Huo, H. Yang and J. Ma, Catal. Sci. Technol. 6(2016)6396–6405.

Google Scholar

[24] K. Panwar, M. Jassal and A. K. Agrawal, RSC Adv. 6(2016)92754–92764.

DOI: 10.1039/c6ra12378c

Google Scholar

[25] M. Yan, G. Li, C. Guo, W. Guo, D. Ding, S. Zhang and S. Liu, Nanoscale, in press.

Google Scholar

[26] N. A. Cooling, E. F. Barnes, F. Almyahi, K. Feron, M. F. Al-Mudhaffer, A. Al- Ahmad, B. Vaughan, T. R. Andersen, M. J. Griffith, A. S. Hart, A. G. Lyons, W. J. Belchera and P. C. Dastoor, J. Mater. Chem. A. 4(2016)10274–10281.

DOI: 10.1039/c6ta04191d

Google Scholar

[27] W. Ke, D. Zhao, C. Xiao, C. Wang, A. J. Cimaroli, C. R. Grice, M. Yang, Z. Li, C. Jiang, M. Al-Jassim, K. Zhu, M.G. Kanatzidis, G. Fang and Y. Yan, J. Mater. Chem. A. 4(2016)14276–14283.

DOI: 10.1039/c6ta05095f

Google Scholar

[28] K. Zhao, Q. Wang, B. Xu, W. Zhao, X. Liu, B. Yang, M. Sun and J. Hou, J. Mater. Chem. A. 4(2016)9511–9518.

Google Scholar

[29] Y. Tamura, D. Kuzuhara, M. Suzuki, H. Hayashi, N. Aratani and H. Yamada, J. Mater. Chem. A, in press.

Google Scholar

[30] L. Zhang, T. L. Andrew, Organic Electronics. 33 (2016) 135-141.

Google Scholar

[31] C. Rajkumar, B. Thirumalraj, S. Chen and S. Palanisamy, RSC Adv. 6(2016)68798–68805.

DOI: 10.1039/c6ra10690k

Google Scholar

[32] W. Zhu, X. Yue, J. Duan, Y. Zhang, W. Zhang, S. Yu, Y. Wang, D. Zhang, J. Wang, Electrochimica Acta. 188 (2016) 85–90.

Google Scholar

[33] Y. Kim, J. B. Jeon, J. Y. Chang, Materials Letters. 182(2016)235–239.

Google Scholar

[34] B. Thirumalraj, S. Palanisamy, S. Chen, B. Lou, Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples, Journal of Colloid and Interface Science. 462 (2016).

DOI: 10.1016/j.jcis.2015.10.009

Google Scholar

[35] J. A. Rathera, E. A. Khudaisha, A. Munama, A. Qurashib, P. Kannan, Electrochemically reduced fullerene–graphene oxide interface forswift detection of Parkinsons disease biomarkers, Sensors and Actuators B. 237 (2016) 672–684.

DOI: 10.1016/j.snb.2016.06.137

Google Scholar

[36] J. Shi, B. Wang, L. Wang, T. Lu, Y. Fu, H. Zhang, Z. Zhang, Fullerene (C60)-based tumor-targeting nanoparticles with off-on, state for enhanced treatment of cancer, Journal of Controlled Release. 235 (2016) 245–258.

DOI: 10.1016/j.jconrel.2016.06.010

Google Scholar

[37] J. Shi, Z. Chen, L. Wang, B. Wang, L. Xu, L. Hou, Z. Zhang, A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging, Acta Biomaterialia. 29 (2016).

DOI: 10.1016/j.actbio.2015.10.027

Google Scholar

[38] Q. Li, L. Hong, H. Li, C. Liu, Grapheneoxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light, Biosensors and Bioelectronics, in press.

DOI: 10.1016/j.bios.2016.03.072

Google Scholar

[39] T. Song, J. Huo, T. Liao, J. Zeng, J. Qin, H. Zeng, Fullerene [C60] modified Cr2-xFexO3 nanocomposites for enhanced photocatalytic activity under visible light irradiation, Chemical Engineering Journal. 287 (2016) 359–366.

DOI: 10.1016/j.cej.2015.11.030

Google Scholar

[40] K. Barthelmes, A. Wintera, and U. S. Schubert, Hybrid materials based on ruthenium and fullerene Assemblies, Dalton Trans. 45(2016)14855–14882.

DOI: 10.1039/c6dt02613c

Google Scholar

[41] R. Geitner, J. Ko¨tteritzsch, M. Siegmann, R. Fritzsch, T. W. Bocklitz, M. D. Hager, U. S. Schubert, S. Gra¨fe, B. Dietzek, M. Schmitta and J. Popp, Molecular self-healing mechanisms between C60-fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy, Phys. Chem. Chem. Phys. 18(2016).

DOI: 10.1039/c6cp03464k

Google Scholar

[42] C. O. Obondi, G. N. Lim, P. A. Karr, V. N. Nesterova and F. D'Souza, Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY–fullerene systems, Phys. Chem. Chem. Phys. 18( 2016)18187—18200.

DOI: 10.1039/c6cp03479a

Google Scholar

[43] J. Shi, Z. Chen, L. Wang, B. Wang, L. Xu, L. Hou, Z. Zhang, A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging, Acta Biomaterialia. 29 (2016).

DOI: 10.1016/j.actbio.2015.10.027

Google Scholar

[44] S. J. Vance, V. Desai, B. O. Smith, M. W. Kennedy, A. Cooper, Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2, Biophysical Chemistry. 214–215 (2016) 27–32.

DOI: 10.1016/j.bpc.2016.05.003

Google Scholar

[45] M. Czichy, P. Wagner, M. Łapkowski, D.L. Officer, Effect of π-conjugation on electrochemical properties of poly(terthiophene)s 3'-substituted with fullerene C60, Journal of Electroanalytical Chemistry. 772 (2016) 103–109.

DOI: 10.1016/j.jelechem.2016.04.009

Google Scholar

[46] U. Makhmanova, O. Ismailovaa, A. Kokhkharova, E. Zakhidova, S. Bakhramov, Features of self-aggregation of C60molecules in toluene prepared by different methods, Physics Letters A. 380 (2016) 2081–(2084).

DOI: 10.1016/j.physleta.2016.04.030

Google Scholar

[47] M. Eskandari, A. Najdian, R. Soleyman, Investigation on the interactions between fullerene and β-CD-g-hyperbranched polyglycerol to produce water-soluble fullerene, Chemical Physics. 472 (2016) 9–17.

DOI: 10.1016/j.chemphys.2016.03.001

Google Scholar

[48] I. Hong, C. Gao, Large area self-ordered parallel C60 molecular nanowire arrays on Si (110) surfaces, Carbon. 107 (2016) 925-932.

DOI: 10.1016/j.carbon.2016.06.105

Google Scholar

[49] D. Liu, D. Liu, D. Dong, Y. He, J. Liu, B. Liu, One-step synthesis of C60 nano-assemblies at different temperatures, Materials and Design. 93 (2016) 343–346.

DOI: 10.1016/j.matdes.2016.01.004

Google Scholar

[50] M. Baibarac, I. Baltog, M. Daescu, S. Lefrant, P. Chirita, Optical evidence for chemical interaction of the polyaniline/fullerene composites with N-methyl-2-pyrrolidinone, Journal of Molecular Structure. (2016), in press.

DOI: 10.1016/j.molstruc.2016.07.001

Google Scholar

[51] X. Jiang, M. Yuan, H. Liu, L. Li, Z. Dun, Optoelectronic properties of one-dimensional fullerene Nanorods, Materials Letters. 176(2016)52–55.

DOI: 10.1016/j.matlet.2016.03.087

Google Scholar

[52] C. Zhang, S. L. Daifuku, M. L. Neidig, A. P. Marchetti, Resident holes and electrons at organic/conductor and organic/organic interfaces: An electron paramagnetic resonance investigation, Organic Electronics. 37 (2016) 379-385.

DOI: 10.1016/j.orgel.2016.07.001

Google Scholar

[53] M. Gizdavic-Nikolaidisa, J. Vellaa, G. A. Bowmakera, Z. D. Zujovic, Rapid microwave synthesis of polyaniline–C60 nanocomposites, Synthetic Metals. 217 (2016) 14–18.

DOI: 10.1016/j.synthmet.2016.03.009

Google Scholar

[54] N. O. Balayeva, Z. Q. Mamiyev, Synthesis and characterization of Ag2S/PVA-fullerene (C60) nanocomposites, Materials Letters. 175(2016)231–235.

DOI: 10.1016/j.matlet.2016.04.024

Google Scholar

[55] X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li; Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties, Materials Chemistry and Physics. 178(2016)88-97.

DOI: 10.1016/j.matchemphys.2016.04.074

Google Scholar

[56] Q. Cong, X. He, M. Gao, X. Ma, G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations. 18(2014)740-746.

DOI: 10.1179/1432891714z.000000000775

Google Scholar

[57] Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li, Surface modification of ZnO nanosheets with Au/polyaniline and their properties, Materials Research Innovations. 18(2014)30-36.

Google Scholar

[58] X. Ma, M. Wang, G. Li, H. Chen, and R. Bai, Preparation of Polyaniline-TiO2 Composite Film with in-situ Polymerization Approach and Its Gas-sensitivity at Room Temperature, Materials Chemistry and Physics. 98(2006)241-247.

DOI: 10.1016/j.matchemphys.2005.09.027

Google Scholar

[59] X. Ma, B. Zhang, ·Q. Cong, X. He, M. Gao, G. Li, Highly-Enhanced Performance of TiO2 Nanotube Attached CdS Quantum Dots, Current Nanoscience. 12(2016)500-507.

DOI: 10.2174/1573413711666151015213214

Google Scholar