Developing Superplasticity in High-Entropy Alloys Processed by Severe Plastic Deformation

Article Preview

Abstract:

High-entropy alloys (HEAs) are currently attracting much interest because they offer unique properties and good ductility at low temperatures. These materials are of interest primarily because they contain five or more principal elements, with each element having a concentration between 5 and 35 at. %, and yet they have very simple structures based on solid solution phases. Superplasticity is defined formally as a tensile elongation without failure of at least 400% and very recent experiments have shown that the HEAs also have a potential for exhibiting superplastic ductilities when testing at elevated temperatures. Since superplasticity requires a very small grain size, typically <10 μm, it is feasible to process HEAs using severe plastic deformation in order to introduce significant grain refinement. The objective of this review is to summarize the recent results showing superplasticity in HEAs and to compare directly the superplastic flow in HEAs and superplasticity in conventional metallic alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1059-1064

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys – a new era of exploitation, Mater. Sci. Forum 560 (2007) 1-9.

Google Scholar

[4] M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107-123.

Google Scholar

[5] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6 (2004) 74-78.

DOI: 10.1002/adem.200300507

Google Scholar

[6] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36A (2005) 881-893.

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[7] U.S. Hsu, U.D. Hung, J.W. Yeh, S.K. Chen, Y.S. Huang, C.C. Yang, Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys, Mater. Sci. Eng. A 460-461 (2007) 403-408.

DOI: 10.1016/j.msea.2007.01.122

Google Scholar

[8] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[9] T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.

Google Scholar

[10] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[11] A.P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[12] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater. 51 (2003) 753-765.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[13] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, J. Mater. Sci. 48 (2013) 4653-4660.

DOI: 10.1007/s10853-012-7072-0

Google Scholar

[14] D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, O.N. Senkov, Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy, JOM 65 (2013) 1815-1828.

DOI: 10.1007/s11837-013-0754-5

Google Scholar

[15] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum 735 (2013) 146-151.

DOI: 10.4028/www.scientific.net/msf.735.146

Google Scholar

[16] N.D. Stepanov, D.G. Shaysultanov. G.A. Salishchev, O.N. Senkov, Mechanical behavior and microstructure evolution during superplastic deformation of the fine-grained AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum 838-839 (2016) 302-307.

DOI: 10.4028/www.scientific.net/msf.838-839.302

Google Scholar

[17] H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 685 (2017) 342-348.

DOI: 10.1016/j.msea.2017.01.016

Google Scholar

[18] H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, T.G. Langdon, Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A (2018) in press.

DOI: 10.1016/j.msea.2018.02.002

Google Scholar

[19] S.R. Reddy, S. Bapari, P.P. Bhattacharjee, A.H. Chokshi, Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy, Mater. Res. Lett. 5 (2017) 408-414.

DOI: 10.1080/21663831.2017.1305460

Google Scholar

[20] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar