Structural Characterization of Reaction Product Region in Al/MgO and Al/MgAl2O4 Systems

Article Preview

Abstract:

The reaction product region, formed between molten aluminium and MgO and MgAl2O4 single crystals of three different crystallographic orientations, was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectrometry (EDS). The Al/MgO and Al/MgAl2O4 couples were produced under ultra high vacuum at 800, 900 and 1000°C. The observations proved the redox reactions of Al with both MgO and MgAl2O4. Independently of crystallographic orientation of initial oxide single crystals, the reaction product region (RPR) was formed and it was built of oxide particles surrounded by continuous metallic phase. For Al/MgO couples, the RPR was composed of two layers, where in the first layer, the oxide phase was Al2O3 while in the second layer, the MgAl2O4 was identified. In the case of Al/MgAl2O4 couples, a single layer was distinguished and only the Al2O3 phase was recognized.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1273-1278

Citation:

Online since:

June 2011

Export:

Price:

[1] N. Sobczak, J. Schmidt, A. Kazakov, Patent PL-166953, 26.07.(1991)

Google Scholar

[2] N. Sobczak, M. Ksiazek, W. Radziwill, J. Morgiel, W. Baliga, L. Stobierski, Proc. High Temperature Capillarity, Foundry Research Institute, Poland (1997) 138

Google Scholar

[3] H.J. Scheel, J. Cryst. Growth 211 (2000) 1

Google Scholar

[4] D.R. Clarke, Interpenetrating Phase Composites: Report of the Snowmass Workshop, J. Amer. Cer. Soc. 75 [4] (1992) 739

Google Scholar

[5] M.C. Breslin, J. Ringnalda, L. Xu, M. Fuller, J. Seeger, G.S. Daehn, T. Otani, H.L. Fraser, Mater. Sci. Eng. A, 195[1] (1995) 113

DOI: 10.1016/0921-5093(94)06510-1

Google Scholar

[6] W. Liu, U. Köster, Scripta Mater. 35[1] (1996) 35

Google Scholar

[7] M.C. Breslin, J. Ringnalda, J. Seeger, A.L. Marasco, G.S. Daehn, H.L. Fraser, Cer. Eng. Sci. Proc. 5[4] (1994) 104

Google Scholar

[8] R.E. Loehman, K.G. Ewsuk, A. Tomsia, J. Amer. Cer. Soc. 79[1] (1996) 27

Google Scholar

[9] N. Sobczak, in Bulk and Graded Nanometals, K.J. Kurzydlowski and Z. Pakiela (Eds.), Solid State Phen., 101-102 (2005) 221

Google Scholar

[10] N. Sobczak, L. Stobierski, M. Ksiazek, W. Radziwill, R. Nowak, A. Kudyba, Ceramika 80 (2003) 831

Google Scholar

[11] N. Sobczak, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 1 (2007) 187

Google Scholar

[12] R. Nowak, N. Sobczak, W. Radziwill, A. Kudyba, E. Sienicki, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 2 (2008) 225

Google Scholar

[13] L. Ceschini, G. Minak, A. Morri, Comp. Sci. Tech. 66 (2006) 333

Google Scholar

[14] S. Antolin, A.S. Nagelberg, D.K. Creber, J. Amer. Cer. Soc. 75[2] (1992) 447

Google Scholar

[15] K. Grjotheim, O. Herstad, J.M. Toguri, Canad. J. Chem. 39 (1961) 443

Google Scholar

[16] D.R. Giese, F.J. Lamelas, H.A. Owen, R. Plass, M. Gajdardziska-Josifovska, Surf. Sci. 457 (2000) 326

DOI: 10.1016/s0039-6028(00)00382-4

Google Scholar

[17] R. Nowak, N. Sobczak, A. Kudyba, W. Radziwill, E. Sienicki, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 3 (2009) 89

Google Scholar