Tailoring the Electrical Properties of Undoped GaP

Article Preview

Abstract:

The charge compensation in undoped GaP single crystals is investigated by modeling the Fermi level position for various concentrations of shallow and deep donors and acceptors. The model is based on the numerical solution of the charge neutrality equation and allows for calculating the Fermi energy in the temperature range of 1 –1000 K. The experimental studies of the electronic properties and concentrations of grown-in defect centers are performed by the high-resolution photoinduced transient spectroscopy (HRPITS). We show that at the shallow acceptor concentration below 1x1015 cm-3 and the concentration of deep-level defects ~3x1015 cm-3 obtaining undoped GaP with the semi-insulating (SI) properties is possible by substantial reducing the residual concentration of shallow donor impurities.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

410-415

Citation:

Online since:

August 2011

Export:

Price:

[1] M. J. Puska, Electronic structures of point defects in III-V compound semiconductors, J. Phys: Condens. Matter 1 (1989) 7347-7366.

DOI: 10.1088/0953-8984/1/40/010

Google Scholar

[2] A. Höglund, C. W. M. Castleton, and S. Mirbt, Relative concentration and structure of native defects in GaP, Phys. Rev. B 72 (2005) 195213-1-16.

DOI: 10.1103/physrevb.72.195213

Google Scholar

[3] S. W. Provencher, CONTIN: A general purpose program for inverting noisy algebraic and integral equations, Comp. Phys. Commun. 27 (1982) 213-228.

DOI: 10.1016/0010-4655(82)90174-6

Google Scholar

[4] P. Kamiński, R. Kozłowski, S. Strzelecka,  A. Hruban, E. Jurkiewicz-Wegner, and M. Piersa, High-resolution photoinduced transient spectroscopy of defect centres in semi-insulating GaP, Phys. Stat. Solidi C 8 (2011) 1361-1365.

DOI: 10.1002/pssc.201084009

Google Scholar

[5] Information on http: /www. ioffe. ru/SVA/NSM/Semicond/GaP/bandstr. html.

Google Scholar

[6] T. A. Kennedy and N. D. Wilsay, Electron paramagnetic resonance identification of the phosphorus antisite in electron-irradiated InP, Appl. Phys. Lett. 44 (1984) 1089-1091.

DOI: 10.1063/1.94654

Google Scholar

[7] N. Baber and M. Zafar Iqbal, Field effect on thermal emission from the 0. 85-eV hole level in GaP, J. Appl. Phys. 62 (1987) 4471-4474.

DOI: 10.1063/1.339036

Google Scholar

[8] D. C. Look, Statistics of multicharge centers in semiconductors, Phys. Rev. B 24 (1981) 5852-5862.

DOI: 10.1103/physrevb.24.5852

Google Scholar

[9] P. Kaminski, R. Kozlowski, A. Jelenski, T. Mchedlidze, and M. Suezawa, High-resolution photoinduced transient spectroscopy of electrically active iron-related defects in electron irradiated high-resistivity silicon, Jpn. J. Appl. Phys. 42 (2003).

DOI: 10.1143/jjap.42.5415

Google Scholar

[10] A. V. Skazochkin, Yu. K. Krutogolov, and G. G. Bondarenko, Models of deep centers in gallium phosphide, Semicond. Sci. Technol. 11 (1996) 495-501.

DOI: 10.1088/0268-1242/11/4/006

Google Scholar