Application of Incremental Metal Forming for Production of Aircraft Integral Panels

Article Preview

Abstract:

The principle and the potential of an incremental bulk metal forming method is presented in the paper. It can be used for manufacturing of the specific aircraft integral panels in a form of ribbed parts with high surface/thickness ratio. A unique laboratory device has been developed to investigate the effect of process parameters on the material flow and the press load. It utilizes tooling consisting of working rolls, a die and a punch that is divided into a number of segments. The results of preliminary numerical simulations proved that the presented forming method offers significant advantages in comparison with conventional forging.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 212)

Pages:

243-246

Citation:

Online since:

December 2013

Export:

Price:

[1] J. Munroe, K. Wilkins, M. Gruber, Integral airframe structures (IAS) - Validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs, NASA/CR-2000-209337, Seattle, Washington, Boeing Commercial Airplane Group (2000).

Google Scholar

[2] M. Pacchione, J. Telgkamp, Challenges of the metallic fuselage, 25th Int. Congress of the Aeronautical Sciences ICAS2006, Sept. 3-8 2006, Hamburg, Germany.

Google Scholar

[3] K.H. Rendigs, M. Knüwer, Metal materials in Airbus A380, 2nd Izmir Global Aerospace & Offset Conference, Oct. 6-8. 2010, Izmir, Turkey.

Google Scholar

[4] Y. Yan, M. Wan, H. Wang, L. Huang, Design and optimization of press bend forming path for producing aircraft integral panels with compound curvatures, Chinese Journal of Aeronautics, 23 (2) (2010) 274-282.

DOI: 10.1016/s1000-9361(09)60216-8

Google Scholar

[5] F. Grosman, K.J. Kurzydłowski, J. Pawlicki, L. Tomecki, Sposób kształtowania odkuwek i przyrząd do kształtowania odkuwek matrycą segmentową (in Polish), patent No. 210904.

Google Scholar

[6] J. Nowak, Ł. Madej, F. Grosman, M. Pietrzyk, The material flow analysis in the modified orbital forging technology, Materials Science Forum 654-656 (2010) 1622-1625.

DOI: 10.4028/www.scientific.net/msf.654-656.1622

Google Scholar

[7] F. Grosman, Ł. Madej, S. Ziółkiewicz, J. Nowak, Experimental and numerical investigation on development of new incremental forming process, J. Mater. Process. Technol. 212 (2012) 2200-2209.

DOI: 10.1016/j.jmatprotec.2012.06.014

Google Scholar

[8] G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of workability and process design, ASM International Materials Park OH (2003) 382.

Google Scholar

[9] M. Tkocz, F. Grosman, Parametry siłowo-energetyczne procesu kształtowania segmentowego (in Polish), Prace Naukowe Mechanika 253 (2013) 77-82.

Google Scholar