Structural Behaviour of EuCoO3 and Mixed Cobaltites-Ferrites EuCo1xFexO3

Article Preview

Abstract:

Crystal structure of the mixed cobaltites-ferrites EuCo1xFexO3, obtained by solid state reaction in air at 1573 K, has been studied by means of X-ray powder diffraction technique. It was found that all samples synthesized adopt orthorhombic perovskite structure. Obtained values of structural parameters indicate formation of continuous solid solution in the EuCoO3−EuFeO3 system. Thermal behaviour of the EuCoO3 structure has been investigated in the temperature range of 298–1173 K by means of in situ high-resolution powder diffraction technique applying synchrotron radiation. Strong anomalies in the lattice expansion have been detected between 580 K and 800 K, which are evidently connected with the transitions of Co3+ ions to the higher spin states and further metal-insulator transition occurred in EuCoO3 at about 600 K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

31-38

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] Yu. Liu, J. Ma, J. Li, J. Lai, Yo. Liu, Study of LaCoO3 as a cathode catalyst for a membraneless direct borohydride fuel cell, J. Alloys Compd. 488 (2009) 204-207.

DOI: 10.1016/j.jallcom.2009.08.079

Google Scholar

[2] J.R. Mawdsley, T.R. Krause, Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen, Appl. Catal. A Gen. 334 (2008) 311-320.

DOI: 10.1016/j.apcata.2007.10.018

Google Scholar

[3] S. Uhlenbruck, F. Tietz, High temperature thermal expansion and conductivity of cobaltites: Potentials for adoptation of the thermal expansion to the demands for SOFCs, Mater. Sci. Eng. 107 (2004) 277-282.

DOI: 10.1016/j.mseb.2003.11.018

Google Scholar

[4] K. Knizek, Z. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, T.T.M. Palstra, Structural anomalies associated with the electronic and spin transitions in LnCoO3, Eur. Phys. J. B 47 (2005) 213-220.

DOI: 10.1140/epjb/e2005-00320-3

Google Scholar

[5] K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, T. Lorenz, Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO3 (R = La, Pr, Nd, and Eu). Phys. Rev. B 78 (2008) 134402.

DOI: 10.1103/physrevb.78.134402

Google Scholar

[6] L. Vasylechko, A.M.T. Bell, Influence of cation substitution on spin-state transitions in mixed RE cobaltites and chromites. Proc. Internat. Conf. Oxide Materials for Electronic Engineering (OMEE), September 3-7, 2012, Lviv, Ukraine. (2012).

DOI: 10.1109/omee.2012.6464781

Google Scholar

[7] Y.Q. Jia, S.T. Liu, Y. Wu, M.Z. Jin, X.W. Liu, M.L. Liu, Crystal structures and Mössbauer spectra of LaFe1-xMnxO3 and LaFe1-xCoxO3 (x = 0 to 0. 9), Phys. Status Solidi A 143 (1994) 15-22.

DOI: 10.1002/pssa.2211430103

Google Scholar

[8] D. Karpinsky, I. Troyanchuk, K. Bärner, H. Szymczak, M. Tovar, Crystal structure and magnetic ordering of the LaCo1−xFexO3 system, J. Phys.: Condens. Matter. 17 (2005) 7219-7226.

DOI: 10.1088/0953-8984/17/46/006

Google Scholar

[9] S. Ivanova, A. Senyshyn, E. Zhecheva K. Tenchev, R. Stoyanova, H. Fuess, Crystal structure, microstructure and reducibility of LaNixCo1-xO3 and LaFexCo1-xO3 perovskites, Solid State Chem. 183 (2010) 940-950.

DOI: 10.1016/j.jssc.2010.02.009

Google Scholar

[10] H. Nagamoto, I. Mochida, K. Kagotani, H. Inoue, A. Negishi, Change of thermal expansion coefficient and electrical conductivity of LaCo1-xMxO3 (M = Fe, Ni), J. Mater. Res. 8 (1993) 3158-3162.

DOI: 10.1557/jmr.1993.3158

Google Scholar

[11] Z. Wang, Ch. Chen, C. Feng, J. Wang, B. Zou, M. Zhao, F. Wu, Synthesis, characterization and humidity sensitive properties of nanocrystalline LaCoxFe1−xO3, Acta Phys. -Chim. Sin. 24 (2008) 375-378.

DOI: 10.1016/s1872-1508(08)60017-0

Google Scholar

[12] N. Escalona, S. Fuentealba, G. Pecchi, Fischer–Tropsch synthesis over LaFe1−xCoxO3 perovskites from a simulated biosyngas feed, Appl. Catal. A Gen. 381 (2010) 253-260.

DOI: 10.1016/j.apcata.2010.04.022

Google Scholar

[13] О. Kharko, L. Vasylechko, Structural behavior of solid solutions in the PrCoO3-PrFeO3 system, Visnyk of Lviv Polytechnic National University. Electronics, 734 (2012) 119-126.

Google Scholar

[14] O. Kharko, L. Vasylechko, Yu. Prots, Structural and thermal behaviour of solid solution in the PrCoO3-PrFeO3 system. 14th European Conference on Solid State Chemistry, Bordeaux, France, (2013) 75.

Google Scholar

[15] О. Kharko, L. Vasylechko, Anomalous thermal expansion of new mixed praseodymium cobaltites-ferrites, Visnyk of Lviv Polytechnic National University. Electronics, 764 (2013) 61-69.

Google Scholar

[16] O. Kharko, L. Vasylechko, S. Ubizskii, A. Pashuk, Yu. Prots. Structural behaviour of continuous solid solution SmCo1-xFexO3, J. Functional Materials 21 (2014) 226-232.

DOI: 10.15407/fm21.02.226

Google Scholar

[17] T.C. Gibb, Magnetic exchange interactions in perovskite solid solutions. Part I. Iron-57 and 151Eu Mössbauer spectra of EuFel-xCoxO3 (0<x<1), J. Chem. Soc. Dalton Trans. (1983) 873-878.

DOI: 10.1039/dt9830002035

Google Scholar

[18] Y. Wu, C. Dujardin, P. Granger, C. Tiseanu, S. Sandu, V. Kuncser and V.I. Parvulescu, Spectroscopic investigation of iron substitution in EuCoO3: related impact on the catalytic properties in the high-temperature N2O decomposition, J. Phys. -Chem. C 117 (2013).

DOI: 10.1021/jp402211c

Google Scholar

[19] L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47 (2014) 803-805.

DOI: 10.1107/s1600576714001058

Google Scholar

[20] M. Marezio, J. Remeika, P. Dernier, The crystal chemistry of the rare earth orthoferrites, Acta Crystallogr. B 26 (1970) 2008-(2022).

DOI: 10.1107/s0567740870005319

Google Scholar

[21] О. Kharko, L. Vasylechko, Crystal structure of new mixed cobaltites-ferrites NdCo1-xFexO3, Visnyk of Lviv Polytechnic National University, Electronics, 798 (2014) 34-40.

Google Scholar

[22] L. Vasylechko, A. Senyshyn, U. Bismayer, Perovskite-type aluminates and gallates, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr., J. -C.G. Bünzli and V. K. Pecharsky, eds., North-Holland: Netherlands, 2009, vol. 39, pp.113-295.

DOI: 10.1016/s0168-1273(08)00002-0

Google Scholar

[23] N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt. Phase and structural behaviour of SmAlO3-RAlO3 (R = Eu, Gd) systems. Mater. Res. Bull. 50C (2014) 509-513.

DOI: 10.1016/j.materresbull.2013.11.048

Google Scholar

[24] L. Vasylechko, A. Matkovski, A. Suchocki, D. Savytskii, I. Syvorotka, Crystal structure of LaGaO3 and (La, Gd)GaO3 solid solutions, J. Alloys Compd. 286 (1999) 213-218.

DOI: 10.1016/s0925-8388(98)01009-3

Google Scholar

[25] L. Vasylechko, M. Berkowski, A. Matkovskii, W. Piekarczyk, D. Savytskii, Structure peculiarities of the La1-xNdxGaO3 solid solutions, J. Alloys Compd. 300-301 (2000) 471-474.

DOI: 10.1016/s0925-8388(99)00700-8

Google Scholar

[26] M. Berkowski, J. Fink-Finowicki, P. Byszewski, R. Diduszko, E. Kowalska, R. Aleksijko, W. Piekarczyk, L.O. Vasylechko, D.I. Savytskij, L. Perchuć, J. Kapuśniak, Czochralski growth and structural investigations of La1-xPrxGaO3 solid solution single crystals, J. Crystal Growth 222 (2001).

DOI: 10.1016/s0022-0248(00)00916-7

Google Scholar

[27] L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii, A. Matkovski, U. Bismayer, M. Berkowski, R-3c–Pbnm phase transition of La1-xSmxGaO3 (0£x£0. 3) perovskites and crystal structures of the orthorhombic and trigonal phases, Solid State Ionics 143 (2001).

DOI: 10.1016/s0167-2738(01)00857-8

Google Scholar

[28] V. Vashook, L. Vasylechko, N. Trofimenko, M. Kuznecov, P. Otchik, J. Zosel, U. Guth, A-site deficient perovskite-type compounds in the ternary CaTiO3-LaCrO3-La2/3TiO3 system, J. Alloys Compd. 419 (2006) 271–280.

DOI: 10.1016/j.jallcom.2005.09.063

Google Scholar