Elements and Materials Improve the FDM Products: A Review

Article Preview

Abstract:

This work aims to provide a review of available published literature that explores the opportunities to improve the quality of fused deposit modelling (FDM) products, particularly in medical applications. The paper presents details concerning the basis of the technology, process parameter settings and their responses, and reviews the properties of common FDM engineering/bio-materials and the available methods applied for improving their performance. Based on the researches which have been reviewed, FDM technology works within a complex environment from process parameters. Thus, it can achieve good results only with the proper settings for these parameters according to the properties of the material used. Improving the polymers is essentially based on the correct selection of additive materials, which can particularly enhance the key property/properties in the matrix material. This review provides a brief insight into FDM technology, provides an idea of the process parameter settings, the available materials and ways of modifying their properties to consequently improve the quality of FDM products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-51

Citation:

Online since:

April 2016

Export:

Price:

* - Corresponding Author

[1] K. Lokesh and P. K. Jain, Selection of Rapid Prototyping Technology, Adv. Prod. Eng. Manag., vol. 5, no. 2, p.75–84, (2010).

Google Scholar

[2] K. V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., vol. 2012, p.1–10, (2012).

Google Scholar

[3] S. Negi, S. Dhiman, and R. K. Sharma, Basics and applications of rapid prototyping medical models, Rapid Prototyp. J., vol. 20, no. 3, p.256–267, (2014).

DOI: 10.1108/rpj-07-2012-0065

Google Scholar

[4] D. V. Mahindru and P. Mahendru, Review of Rapid Prototyping-Technology for the Future, Glob. J. Comput. Sci. Technol. Graph. Vis., vol. 13, no. 4, p.27–38, (2013).

Google Scholar

[5] R. V. Rao and K. K. Padmanabhan, Rapid prototyping process selection using graph theory and matrix approach, J. Mater. Process. Technol., vol. 193, no. 1–3, p.81–88, (2007).

DOI: 10.1016/j.jmatprotec.2007.04.003

Google Scholar

[6] Q. Sun, G. M. Rizvi, C. T. Bellehumeur, and P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J., vol. 14, no. 2, p.72–80, (2008).

DOI: 10.1108/13552540810862028

Google Scholar

[7] F. E. Wiria, N. Sudarmadji, K. F. Leong, C. K. Chua, E. W. Chng, and C. C. Chan, Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes, Rapid Prototyp. J., vol. 16, no. 2, p.90–99, (2010).

DOI: 10.1108/13552541011025816

Google Scholar

[8] R. Singh, Process capability analysis of fused deposition modelling for plastic components, Rapid Prototyp. J., vol. 20, no. 1, p.69–76, (2014).

DOI: 10.1108/rpj-02-2012-0018

Google Scholar

[9] A. Bellini, L. Shor, and S. I. Guceri, New developments in fused deposition modeling of ceramics, Rapid Prototyp. J., vol. 11, no. 4, p.214–220, (2005).

DOI: 10.1108/13552540510612901

Google Scholar

[10] L. Novakova-Marcincinova, Application of Fused Deposition Modeling Technology in 3D Printing Rapid Prototyping Area, vol. 11, no. 4, p.35–37, (2012).

Google Scholar

[11] M. Vermeulen, T. Claessens, B. Van Der Smissen, C. S. Van Holsbeke, J. W. De Backer, P. Van Ransbeeck, and P. Verdonck, Manufacturing of patient-specific optically accessible airway models by fused deposition modeling, Rapid Prototyp. J., vol. 19, no. 5, p.312–318, (2013).

DOI: 10.1108/rpj-11-2011-0118

Google Scholar

[12] F. Górski, W. Kuczko, and R. Wichniarek, Influence of Process Parameters on Dimensional Accuracy of Parts Manufactured Using Fused Deposition Modelling Technology, Adv. Sci. Technol. – Res. J., vol. 7, no. 19, p.27–35, (2013).

DOI: 10.5604/20804075.1062340

Google Scholar

[13] B. N. Turner, R. Strong, and S. a. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyp. J., vol. 20, no. 3, p.192–204, (2014).

DOI: 10.1108/rpj-01-2013-0012

Google Scholar

[14] A. Peng, X. Xiao, and R. Yue, Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system, Int. J. Adv. Manuf. Technol., vol. 73, no. 1–4, p.87–100, (2014).

DOI: 10.1007/s00170-014-5796-5

Google Scholar

[15] T. Nancharaiah, Optimization of Process Parameters in FDM Process Using Design of Experiments, Optimize, vol. 2, no. 1, p.100–102, (2011).

Google Scholar

[16] R. A. Shanks, J. Li, and L. Yu, Polypropylene–polyethylene blend morphology controlled by time–temperature–miscibility, Polymer (Guildf)., vol. 41, no. 6, p.2133–2139, (2000).

DOI: 10.1016/s0032-3861(99)00399-7

Google Scholar

[17] A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des., vol. 31, no. 1, p.287–295, (2010).

DOI: 10.1016/j.matdes.2009.06.016

Google Scholar

[18] A. H. Peng and Z. M. Wang, Researches into Influence of Process Parameters on FDM Parts Precision, Appl. Mech. Mater., vol. 34–35, p.338–343, (2010).

DOI: 10.4028/www.scientific.net/amm.34-35.338

Google Scholar

[19] E. Bash, Practical 3D printers The Scienece and Art of 3D Printing, vol. 1. (2015).

Google Scholar

[20] Z. Chen and 陈哲, Selection of Optimal Build Orientation with Minimum Strain and Maximum Strength in Rapid Prototyping, University of Hong Kong, (2011).

DOI: 10.5353/th_b4559097

Google Scholar

[21] R. H. Hambali, K. Celik, P. Smith, A. Rennie, and M. Ucar, Effect of build orientation on FDM parts: a case study for validation of deformation behaviour by FEA, no. September, p.20–21, (2010).

Google Scholar

[22] W. C. Smith and R. W. Dean, Structural characteristics of fused deposition modeling polycarbonate material, Polym. Test., vol. 32, no. 8, p.1306–1312, (2013).

DOI: 10.1016/j.polymertesting.2013.07.014

Google Scholar

[23] I. Durgun and R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp. J., vol. 20, no. 3, p.228–235, (2014).

DOI: 10.1108/rpj-10-2012-0091

Google Scholar

[24] A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyp. J., vol. 21, no. 5, p.604–617, (2015).

DOI: 10.1108/rpj-09-2014-0135

Google Scholar

[25] A. Asa, S. Abazary, and A. Masomi, Experimental Study of the Effect of the Build Direction on the Compressive Strength of Components made of Fused Deposition Modeling ( FDM ) Method and a Three-Dimensional Printer, no. 1, p.81–84, (2013).

Google Scholar

[26] M. Hossain, J. Ramos, D. Espalin, M. Perez, and R. Wicker, Improving Tensile Mechanical Properties of FDM-Manufactured Specimens via Modifying Build Parameters, Utwired. Engr. Utexas. Edu, p.380–392, (2013).

Google Scholar

[27] M. Domingos, F. Chiellini, a. Gloria, L. Ambrosio, P. Bartolo, and E. Chiellini, Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(?-caprolactone) scaffolds, Rapid Prototyp. J., vol. 18, p.56–67, (2012).

DOI: 10.1108/13552541211193502

Google Scholar

[28] M. W. M. Cunico, Study and optimisation of FDM process parameters for support-material-free deposition of filaments and increased layer adherence: This paper investigates control factors and process parameters that allow the fabrication of negative surface features withou, Virtual Phys. Prototyp., vol. 8, no. November, p.127–134, (2013).

DOI: 10.1080/17452759.2013.790599

Google Scholar

[29] H. L. Brooks, A. E. W. Rennie, T. N. Abram, J. McGovern, and F. Caron, Variable Fused Deposition Modelling - Analysis of benefits, concept design and tool path generation, Innov. Dev. Virtual Phys. Prototyp. - Proc. 5th Int. Conf. Adv. Res. Rapid Prototyp., no. January 2016, p.511–517, (2012).

DOI: 10.1201/b11341-83

Google Scholar

[30] a. a. Tseng and M. Tanaka, Advanced deposition techniques for freeform fabrication of metal and ceramic parts, Rapid Prototyp. J., vol. 7, no. 1, p.6–17, (2001).

DOI: 10.1108/13552540110365117

Google Scholar

[31] M. D. Monzón, I. Gibson, A. N. Benítez, L. Lorenzo, P. M. Hernández, and M. D. Marrero, Process and material behavior modeling for a new design of micro-additive fused deposition, Int. J. Adv. Manuf. Technol., vol. 67, no. 9–12, p.2717–2726, (2013).

DOI: 10.1007/s00170-012-4686-y

Google Scholar

[32] G. D. Kim and Y. T. Oh, A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost., Proc. Inst. Mech. Eng. - Part B - Eng. Manuf. (Professional Eng. Publ., vol. 222, no. 2, p.201–215, (2008).

DOI: 10.1243/09544054jem724

Google Scholar

[33] J. Kotlinski, Mechanical properties of commercial rapid prototyping materials, Rapid Prototyp. J., vol. 20, no. 6, p.499–510, (2014).

DOI: 10.1108/rpj-06-2012-0052

Google Scholar

[34] Prospector, http: /www. ulprospector. com/en/na, website, (2014).

Google Scholar

[35] RedEyE and I. Stratasys, http: /www. redeyeondemand. com/abs-m30/, website, (2015).

Google Scholar

[36] J. Mireles, D. Espalin, D. Roberson, B. Zinniel, F. Medina, and R. Wicker, Fused Deposition Modeling of Metals, J. Electron. Packag., p.836–845, (2012).

Google Scholar

[37] J. Mireles, H. -C. Kim, I. H. Lee, D. Espalin, F. Medina, E. MacDonald, R. Wicker, I. Hwan Lee, D. Espalin, F. Medina, E. MacDonald, and R. Wicker, Development of a fused deposition modeling system for low melting temperature metal alloys, J. Electron. Packag., vol. 135, no. 1, p.11008, (2013).

DOI: 10.1115/1.4007160

Google Scholar

[38] M. Trojanowska-Tomczak, R. Steller, J. Ziaja, G. Szafran, and P. Szymczyk, Preparation and Properties of Polymer Composites Filled with Low Melting Metal Alloys, Polym. Plast. Technol. Eng., vol. 53, no. 5, p.481–487, (2014).

DOI: 10.1080/03602559.2013.845209

Google Scholar

[39] S. H. Masood and W. Q. Song, Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process, Assem. Autom., vol. 25, no. 4, p.309–315, (2005).

DOI: 10.1108/01445150510626451

Google Scholar

[40] R. H. A. Haq, M. S. Bin Wahab, N. I. Jaimi, B. Wahab, M. Saidin, and N. I. Jaimi, Fabrication Process of Polymer Nano-Composite Filament for Fused Deposition Modeling, Appl. Mech. Mater., vol. 465, p.8–12, (2014).

DOI: 10.4028/www.scientific.net/amm.465-466.8

Google Scholar

[41] G. Tsiakatouras, E. Tsellou, and C. Stergiou, Comparative study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts, vol. 12, no. 3, p.392–396, (2014).

Google Scholar

[42] M. L. Shofner, K. Lozano, F. J. Rodríguez-Macías, and E. V. Barrera, Nanofiber-reinforced polymers prepared by fused deposition modeling, J. Appl. Polym. Sci., vol. 89, no. 11, p.3081–3090, (2003).

DOI: 10.1002/app.12496

Google Scholar

[43] O. O. Ivanova, C. C. Williams, and T. T. Campbell, Additive manufacturing (AM) and nanotechnology: promises and challenges, Rapid Prototyp. J., vol. 19, no. 5, p.353–364, (2013).

DOI: 10.1108/rpj-12-2011-0127

Google Scholar

[44] P. Bartolo and B. Bidanda, Bio-materials and prototyping applications in medicine. Springer, (2008).

Google Scholar

[45] M. A. Woodruff and D. W. Hutmacher, The return of a forgotten polymer - Polycaprolactone in the 21st century, Prog. Polym. Sci., vol. 35, no. 10, p.1217–1256, (2010).

DOI: 10.1016/j.progpolymsci.2010.04.002

Google Scholar

[46] Y. Zheng, C. Xiong, and L. Zhang, Formation of bone-like apatite on plasma-carboxylated poly(etheretherketone) surface, Mater. Lett., vol. 126, p.147–150, (2014).

DOI: 10.1016/j.matlet.2014.04.021

Google Scholar

[47] A. M. Shah, H. Jung, and S. Skirboll, Materials used in cranioplasty: a history and analysis., Neurosurg. Focus, vol. 36, no. 4, p. E19, (2014).

DOI: 10.3171/2014.2.focus13561

Google Scholar

[48] M. S. MOHAMMADI, M. N. Bureau, and S. N. Nazhat, PLA Polylactic acid (PLA) biomedical foams for tissue engineering, Biomed. Foam. Tissue Eng. Appl., p.313, (2014).

DOI: 10.1533/9780857097033.2.313

Google Scholar

[49] Y. Dong, A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, and K. T. Lau, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Compos. Part A Appl. Sci. Manuf., vol. 63, p.76–84, (2014).

DOI: 10.1016/j.compositesa.2014.04.003

Google Scholar

[50] D. Tripathi, Practical Guide to Polypropylene. (2002).

Google Scholar

[51] H. G. Karian, Polypropylene and Polypropylene Composites. (2003).

Google Scholar

[52] S. S. Jikan, I. M. Arshat, and N. A. Badarulzaman, Melt Flow and Mechanical Properties of Polypropylene/Recycled Plaster of Paris, Appl. Mech. Mater., vol. 315, p.905–908, (2013).

DOI: 10.4028/www.scientific.net/amm.315.905

Google Scholar

[53] K. F. Vargas, R. L. Borghetti, S. P. Moure, F. G. Salum, K. Cherubini, and M. A. Z. de Figueiredo, Use of polymethylmethacrylate as permanent filling agent in the jaw, mouth and face regions–implications for dental practice, Gerodontology, vol. 29, no. 2, pp. e16–e22, (2012).

DOI: 10.1111/j.1741-2358.2011.00479.x

Google Scholar

[54] S. T. S. C. Lee, C. T. Wu, S. T. S. C. Lee, and P. J. Chen, Cranioplasty using polymethyl methacrylate prostheses, J. Clin. Neurosci., vol. 16, no. 1, p.56–63, (2009).

DOI: 10.1016/j.jocn.2008.04.001

Google Scholar

[55] X. Wang, J. Tuomi, A. A. Mäkitie, K. -S. Paloheimo, J. Partanen, and M. Yliperttula, The Integrations of Biomaterials and Rapid Prototyping Techniques for Intelligent Manufacturing of Complex Organs. (2013).

DOI: 10.5772/53114

Google Scholar

[56] M. Arora, E. K. Chan, S. Gupta, and A. D. Diwan, Polymethylmethacrylate bone cements and additives: A review of the literature., World J. Orthop., vol. 4, no. 2, p.67–74, (2013).

Google Scholar

[57] R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, Biocompatibility of polymethylmethacrylate resins used in dentistry, J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 100 B, no. 5, p.1444–1450, (2012).

DOI: 10.1002/jbm.b.32673

Google Scholar

[58] C. C. G. Medeiros, K. Cherubini, F. G. Salum, M. A. Z. De Figueiredo, and M. A. Z. Figueiredo, PMMA Complications after polymethylmethacrylate (PMMA) injections in the face: a literature review, Gerodontology, vol. 31, no. 4, p.245–250, (2014).

DOI: 10.1111/ger.12044

Google Scholar

[59] a Neumann, [Biomaterials for craniofacial reconstruction]., Laryngorhinootologie., vol. 88 Suppl 1, pp. S48–S63, (2009).

Google Scholar

[60] A. Tathe, M. Ghodke, and A. Nikalje, A brief review: biomaterials and their application, Int. J. Pharm. Pharm. Sci., vol. 2, no. 4, p.19–23, (2010).

Google Scholar

[61] T. Company, data sheet PP-sm240.

Google Scholar

[62] B. I. S. Cience, BIOMATERIALS SCIENCE An Introduction to Materials in Medicine. (2004).

Google Scholar

[63] G. Liu, Y. Chen, and H. Li, Study on processing of ultrahigh molecular weight polyethylene/ polypropylene blends, J. Appl. Polym. Sci., vol. 94, no. 3, p.977–985, (2004).

DOI: 10.1002/app.20679

Google Scholar

[64] M. Ahmad, M. U. Wahit, M. R. Abdul Kadir, and K. Z. Mohd Dahlan, Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite, Sci. World J., vol. 2012, p.1–13, (2012).

DOI: 10.1100/2012/474851

Google Scholar

[65] M. Xie and H. Li, Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: Effect of blending with polypropylene and poly(ethylene glycol), Eur. Polym. J., vol. 43, no. 8, p.3480–3487, (2007).

DOI: 10.1016/j.eurpolymj.2007.05.016

Google Scholar

[66] H. Karian, Handbook of polypropylene and polypropylene composites, revised and expanded. CRC press, (2003).

DOI: 10.1201/9780203911808

Google Scholar

[67] G. Liu, Y. Chen, and H. Li, Study on processing of ultrahigh molecular weight polyethylene/ polypropylene blends, J. Appl. Polym. Sci., vol. 94, no. 3, p.977–985, (2004).

DOI: 10.1002/app.20679

Google Scholar

[68] Y. M. Li, Y. Z. Yu, and H. L. Wang, Study on Morphology and Property of UHMWPE/PP Blends, in Advanced Materials Research, 2012, vol. 476, p.974–978.

DOI: 10.4028/www.scientific.net/amr.476-478.974

Google Scholar

[69] M. Xie and H. Li, Mechanical properties of an ultrahigh‐molecular‐weight polyethylene/polypropylene blend containing poly (ethylene glycol) additives, J. Appl. Polym. Sci., vol. 108, no. 5, p.3148–3153, (2008).

DOI: 10.1002/app.27919

Google Scholar

[70] G. Liu and H. Li, Extrusion of ultrahigh molecular weight polyethylene under ultrasonic vibration field, J Appl Polym Sci, vol. 89, no. 10, p.2628–2632, (2003).

DOI: 10.1002/app.12163

Google Scholar

[71] J. -G. G. Gai and Y. Zuo, Metastable region of phase diagram: optimum parameter range for processing ultrahigh molecular weight polyethylene blends, J. Mol. Model., vol. 18, no. 6, p.2501–2512, (2012).

DOI: 10.1007/s00894-011-1268-0

Google Scholar

[72] M. Xie, J. Chen, H. Li, and M. Li, Influence of poly(ethylene glycol)-containing additives on the sliding wear of ultrahigh molecular weight polyethylene/polypropylene blend, Wear, vol. 268, no. 5–6, p.730–736, (2010).

DOI: 10.1016/j.wear.2009.11.021

Google Scholar

[73] M. Jin, B. Jin, X. Xu, X. Li, T. Wang, and J. Zhang, Effects of ultrahigh molecular weight polyethylene and mould temperature on morphological evolution of isotactic polypropylene at micro-injection moulding condition, Polym. Test., vol. 46, p.41–49, (2015).

DOI: 10.1016/j.polymertesting.2015.06.018

Google Scholar

[74] C. Xin, Y. He, Q. Li, Y. Huang, B. Yan, and X. Wang, Crystallization behavior and foaming properties of polypropylene containing ultra‐high molecular weight polyethylene under supercritical carbondioxide, J. Appl. Polym. Sci., vol. 119, no. 3, p.1275–1286, (2011).

DOI: 10.1002/app.30717

Google Scholar

[75] Y. An, R. -Y. Y. Bao, Z. -Y. Y. Liu, X. -J. J. Wu, W. Yang, B. -H. H. Xie, and M. -B. B. Yang, Unusual hierarchical structures of mini-injection molded isotactic polypropylene/ultrahigh molecular weight polyethylene blends, Eur. Polym. J., vol. 49, no. 2, p.538–548, (2013).

DOI: 10.1016/j.eurpolymj.2012.10.020

Google Scholar

[76] Y. An, L. Gu, Y. Wang, Y. -M. Li, W. Yang, B. -H. Xie, and M. -B. Yang, Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends, Mater. Des., vol. 35, p.633–639, (2012).

DOI: 10.1016/j.matdes.2011.10.017

Google Scholar

[77] E. M. Lee, H. M. Jeong, and B. K. Kim, Mechanical, Thermal, and Surface Properties of Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends, J. Macromol. Sci. Part B, vol. 49, no. 5, p.854–863, (2010).

DOI: 10.1080/00222341003600723

Google Scholar

[78] S. V Panin, L. А. Kornienko, М. A. Poltaranin, Т. Маndoung, and L. R. Ivanova, Mechanical and Tribotechnical Characteristics of Nanocomposites Based on Mixture of Ultrahigh Molecular Weight Polyethylene and Polypropylene, Adv. Mater. Res., vol. 872, p.36–44, (2014).

DOI: 10.4028/www.scientific.net/amr.872.36

Google Scholar

[79] C. A. Avila-Orta, C. Burger, R. Somani, L. Yang, G. Marom, F. J. Medellin-Rodriguez, and B. S. Hsiao, Shear-induced crystallization of isotactic polypropylene within the oriented scaffold of noncrystalline ultrahigh molecular weight polyethylene, Polymer (Guildf)., vol. 46, no. 20, p.8859–8871, (2005).

DOI: 10.1016/j.polymer.2005.05.136

Google Scholar

[80] M. Xie, J. Chen, and H. Li, Morphology and mechanical properties of injection‐molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding, J. Appl. Polym. Sci., vol. 111, no. 2, p.890–898, (2009).

DOI: 10.1002/app.29036

Google Scholar

[81] L. Xu, Y. -F. Huang, J. -Z. Xu, X. Ji, and Z. -M. Li, Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene, RSC Adv., vol. 4, no. 4, p.1512–1520, (2014).

DOI: 10.1039/c3ra45322g

Google Scholar