Photocatalytic Performance of BiOCl Nanosheets Composite with Graphene

Article Preview

Abstract:

A series of composites of the high photoactivity of {001} facets exposed BiOCl and grapheme sheets (GS) were synthesized via a one-step hydrothermal reaction. The obtained BiOCl/GS photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The as-prepared BiOCl/GS photocatalyst showed enhanced photocatalytic activity for the degradation of methyl orange (MO) under UV and visible light (λ > 400 nm). The enhanced photocatalytic activity could be attributed to oxygen vacancies of the {001} facets of BiOCl/GS and the high migration efficiency of photo-induced electrons, which could suppress the charge recombination effectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-300

Citation:

Online since:

January 2014

Export:

Price:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al.: Science, vol. 306(2004), p.666–669.

Google Scholar

[2] A. K. Geim and K. S. Novoselov: Nat. Mater, vol. 6(2007), p.183–191.

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al.: Nature, vol. 438(2005), p.197–200.

Google Scholar

[4] D. R. Dreyer, S. Park, C. W. Bielawski, et al.: Chem. Soc. Rev., 2010, 39, 228–240.

Google Scholar

[5] O. C. Compton and S. T. Nguyen: Small, vol. 6(2016), p.711–723.

Google Scholar

[6] K. L. Zhang, C. M. Liu, F.Q. Huang, et al.: Appl. Catal., B, vol. 68(2006), pp.125-129.

Google Scholar

[7] X. Y. Zhang, H. P. Li, X. Y. Zhang, et al.: J. Mater. Chem, vol. 20(2010), p.2801–2806.

Google Scholar

[8] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, et al.: Chem. Mater., vol, 11(1999), p.771–778.

Google Scholar

[9] K. Woan, G. Pyrgiotakis and W. Sigmund: Adv. Mater., vol, 21(2009), p.2233–2239.

Google Scholar

[10] Q. Zhang, C. G. Tian, A. P. Wu, et al.: J. Mater. Chem. Vol, 11(2012), p.11778–11784.

Google Scholar

[11] L. Q. Ye, L. Zan, L. H. Tian, et al.: Chem. Commun, vol, 47(2011), 6951–6953.

Google Scholar

[12] X. F. Chang, J. Huang, C. Cheng, et al.: Catalysis Communications, vol, 11(2010), pp.460-464.

Google Scholar

[13] L. W. Zhang , H. B. Fu, Y. F. Zhu: Adv. Funct. Mater, vol, 18(2008), p.2180–2189.

Google Scholar

[14] E. P. Gao, W. Z. Wang, M. Shang, et al.: Phys. Chem. Chem. Phys, vol, 13(2011), p.2887–2893.

Google Scholar

[15] K. Woan, G. Pyrgiotakis and W. Sigmund: Adv. Mater., vol, 21(2009), p.2233–2239.

Google Scholar

[16] B. T. Liu, Y. J. Huang, Y. Wen, et al.: J. Mater. Chem., vol, 22(2012), pp.7484-7491.

Google Scholar

[17] L. Q. Ye, K. J. Deng, F. Xu, et al.: Phys. Chem. Chem. Phys, vol, 14(2012), pp.82-85.

Google Scholar

[18] Z. Deng, F. Tang and A. J. Muscat: Nanotechnology, vol, 19(2008), pp.295705-295711.

Google Scholar

[19] T. B. Li, G. Chen, C. Zhou, et al.: Dalton Trans., vol, 40(2011), p.6751–6758.

Google Scholar