Lignin Modified Urea Fertilizer's Biodegradation and Nitrogen Release under Reduced Soil Condition

Article Preview

Abstract:

Lignin is a natural biopolymer easily available in industrial waste and currently being used in slow release matrix improvements. Research work objective is to study the effect of 5% to 20% alkaline kraft lignin (AL) loadings on the biodegradation and nitrogen release in urea modified tapioca starch, acting as biodegradable slow release fertilizer (SRF) under reduced soil condition. Weight loss (%) of SRFs reduced from 76% to 35% with increasing %AL until day 28. Biodegradability (%) of SRFs affectively reduced at low 5-10%AL compared to high 15-20%AL. Nitrogen release was reduced with increasing the %AL in SRFs. Nitrogen release mechanism showed fickian diffusion mechanism (n<0.5) except for 10%AL (0.5<n<1). The lowest diffusion coefficient, 1.71 x 10-8cm2/s was observed in 10%AL. Fourier transformed infrared analysis of the biodegraded SRFs showed anhydroglucose ring asymmetric stretching vibration due to COC and COH (904-1140cm-1), lignin's aromatic ring stretching (1451-1500cm-1) and deformation of C-H in lignin's guaicyl ring or starch glucose ring (1162 cm-1). Lignin can effectively be used to improve nitrogen slow release and reduce biodegradability of SRFs under reduced soil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

981-987

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] L. Wu, M. Liu, Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention, Carbohydr. Polym. 72 (2008) 240-247.

DOI: 10.1016/j.carbpol.2007.08.020

Google Scholar

[2] S. Ariyanti, Z. Man, B. M. Azmi, Improvement of hydrophobicity of urea modified tapioca starch film with lignin for slow release fertilize, Radv. Mater. Res. 626 (2013) 350-354.

DOI: 10.4028/www.scientific.net/amr.626.350

Google Scholar

[3] I. Calgeris, E. A. Ogan, M. V. Kahraman, N. Kayaman Apohan,  Preparation and drug release properties of lignin–starch biodegradable films, Starch‐Stärke 64 (2012) 399-407.

DOI: 10.1002/star.201100158

Google Scholar

[4] T. Jamnongkan, S. Kaewpirom, Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels, J. Polym. Environ. (2010) 413-421.

DOI: 10.1007/s10924-010-0228-6

Google Scholar

[5] P. Mousavioun, G. A. George, W. O. Doherty, Environmental degradation of lignin/poly (hydroxybutyrate) blends, Polym. Degrad. Stab. 97 (2012) 1114-1122.

DOI: 10.1016/j.polymdegradstab.2012.04.004

Google Scholar

[6] H. Yagi, F. Ninomiya, M. Funabashi, M. Kunioka, Anaerobic Biodegradation of Poly (Lactic Acid) Film in Anaerobic Sludge, J. Polym. Environ. 20 (2012) 673-680.

DOI: 10.1007/s10924-012-0472-z

Google Scholar

[7] P. L. Ritger, N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Controlled Release 5(1987) 37-42.

DOI: 10.1016/0168-3659(87)90035-6

Google Scholar

[8] S. Lepifre, S. Baumberger, B. Pollet, F. Cazaux, X. Coqueret, C. Lapierre, Reactivity of sulphur-free alkali lignins within starch films, Ind. Crops Products 20 (2004) 219-230.

DOI: 10.1016/j.indcrop.2004.04.023

Google Scholar

[9] B. Ni, M. Liu, S. Lu, L. Xie, Y. Wang, Multifunctional Slow-Release Organic− Inorganic Compound Fertilizer, J. Agric. Food Chem. 58 (2010) 12373-12378.

DOI: 10.1021/jf1029306

Google Scholar

[10] C. Cerli, Q. Liu, A. Hanke, K. Kaiser, K. Kalbitz, Lignin Decomposition in Paddy Soils as Affected by Redox Conditions, EGU General Assembly Conference Abstracts 15 (2013) 13896.

Google Scholar

[11] S. J. Hall, W. L. Silver, Iron oxidation stimulates organic matter decomposition in humid tropical forest soils, Global Change Biol. 19 (2013)  2804–2813.

DOI: 10.1111/gcb.12229

Google Scholar

[12] B. Ni, M. Liu, S. Lu, Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations, Chem. Eng. J. 155 (2009) 892-898.

DOI: 10.1016/j.cej.2009.08.025

Google Scholar

[13] M. E. Trenkel, Slow- and Controlled-release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, International Fertilizer Industry Association, Stratospheric Ozone, HMSO: London, 1997, p.11.

Google Scholar

[14] S. Jin, Y. Wang, J. He, Y. Yang, X. Yu, G. Yue, Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer, J. Appl. Polym. Sci. 128 (2012).

DOI: 10.1002/app.38162

Google Scholar

[15] N. Xiaoyu, W. Yuejin, W. Zhengyan, W. Lin, Q. Guannan, Y. Lixiang, A novel slow-release urea fertiliser: Physical and chemical analysis of its structure and study of its release mechanism, Biosys. Eng. 115 (2013) 274-282.

DOI: 10.1016/j.biosystemseng.2013.04.001

Google Scholar

[16] U. Montoya, R. Zuluaga, C. Castro, S. Goyanes, P. Ganan, Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes, J. Thermoplast. Compos. Mater. 27(2013) 413-426.

DOI: 10.1177/0892705712461663

Google Scholar

[17] L. Chen, Z. Xie, X. Zhuang, X. Chen, X. Jing, Controlled release of urea encapsulated by starch-g-poly (l-lactide), Carbohydr. Polym. 72(2008) 342-348.

DOI: 10.1016/j.carbpol.2007.09.003

Google Scholar

[18] L. Su, Z. Xing, D. Wang, G. Xu, S. Ren, G. Fang, Mechanical properties research and structural characterization of alkali lignin/poly (vinyl alcohol) reaction films, BioResources 8 (2013) 3532-3545.

DOI: 10.15376/biores.8.3.3532-3543

Google Scholar