Antibacterial Properties of Rose Bengal Immobilized in Polymer Supports

Article Preview

Abstract:

Photosensitizers immobilized in polymers can serve as antibacterial surfaces or coatings and can be applied for disinfection of water or medical instruments. The antibacterial activity of the immobilized photosensitizers is based on their excitation by visible light followed by energy transfer from the photosensitizers to oxygen dissolved in an aqueous phase which produces reactive oxygen species that cause irreversible damage to bacterial cells. The photosensitizer Rose Bengal immobilized in polystyrene, polycarbonate and poly (methyl methacrylate) was shown to eradicate Gram-positive Staphylococcus aureus bacteria under moderate illumination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-24

Citation:

Online since:

January 2015

Export:

Price:

* - Corresponding Author

[1] I. Macdonald, T. Dougherty, Basic principles of photodynamic therapy, J. Porphyr. Phthalocyanines. 5 (2001) 105-129.

Google Scholar

[2] T. Maisch, Anti-microbial photodynamic therapy: Useful in the Future? Lasers. Med. Sci. 22 (2007) 83-91.

DOI: 10.1007/s10103-006-0409-7

Google Scholar

[3] T. Maisch, R. Szeimies, G. Jori, C. Abels, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci. 3 (2004) 907-917.

DOI: 10.1039/b407622b

Google Scholar

[4] Y. Nitzan, M. Nisnevitch, Special features of Gram-positive bacterial eradication by photosensitizers, Recent Pat. Antiinfect. Drug Discov. 8 (2013) 88-99.

DOI: 10.2174/1574891x113089990013

Google Scholar

[5] J. Paczkowski, D.C. Neckers, Photochemical properties of rose bengal. 11. Fundamental studies in heterogeneous energy transfer, Macromolecules. 18 (1985) 2412-2418.

DOI: 10.1021/ma00154a013

Google Scholar

[6] M. Nowakowska, M. Kȩpczyński, M. Da̧browska, Polymeric photosensitizers. 5. Synthesis and photochemical properties of poly[(N-isopropylacrylamide)-co-(vinylbenzyl chloride)] containing covalently bound rose bengal chromophores, Macromol. Chem. Phys. 202 (2001).

DOI: 10.1002/1521-3935(20010601)202:9<1679::aid-macp1679>3.0.co;2-r

Google Scholar

[7] R. Bonnett, M. Krysteva, I. Lalov, S. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res. 40 (2006) 1269-1275.

DOI: 10.1016/j.watres.2006.01.014

Google Scholar

[8] M. Jiménez-Hernández, F. Manjón, D. García-Fresnadillo, G. Orellana, Solar water disinfection by singlet oxygen photogenerated with polymer-supported Ru(II) sensitizers, Solar Energy. 80 (2006) 1382-1387.

DOI: 10.1016/j.solener.2005.04.027

Google Scholar

[9] D. Faust, , K. Funken, G. Horneck, B. Milow, J. Ortner, M. Sattlegger, M. Schäfer, C. Schmitz, Immobilized photosensitizers for solar photochemical applications, Solar Energy. 65 (1999) 71-74.

DOI: 10.1016/s0038-092x(98)00099-1

Google Scholar

[10] P. Schaap, A.L. Thayer, E.C. Blossey, D.C. Neckers, Polymer-based sensitizers for photooxidations. II, J. Am. Chem. Soc. 97 (1975) 3741-3745.

DOI: 10.1021/ja00846a030

Google Scholar

[11] F. Nakonechny, A. Pinkus, S. Hai, O. Yehosha, Y. Nitzan, M. Nisnevitch, Eradication of Gram-positive and Gram-negative bacteria by photosensitizers immobilized in polystyrene, Photochem. Photobiol. 89 (2013) 671-678.

DOI: 10.1111/php.12022

Google Scholar

[12] M. Nisnevitch, S. Lugovskoy, A. Pinkus, F. Nakonechny, Y. Nitzan, Antibacterial activity of photosensitizers immobilized onto solid supports via mechanochemical treatment, in: S. Pandalai (Ed. ), Recent Research Developments in Photochemistry & Photobiology, Research Signpost, Kerala, India., v. 9 (2014).

DOI: 10.1111/php.12022

Google Scholar