Re-Layout and Robust Machine Layout Design under Stochastic Demand

Article Preview

Abstract:

In manufacturing business, variability in customer demand over time-periods has led to production flexibility on the shop floor area. Placement of machines in a limited manufacturing area is one of the essential plant designs in material flow between machines. Shortened material handling distance can be considered a key performance index of internal logistic activity in a manufacturing firm. This paper presents the application of the Genetic Algorithm for designing machine layouts that minimise total material handling cost based on demand uncertainty during time-periods. The experimental study was computationally conducted based on two scenarios: re-layout after demand changing; and robust layout (no machine movement even if demand changes). A trade-off between the shortened handling distance and total cost was discussed as being a business decision-making tool.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1252-1257

Citation:

Online since:

September 2015

Export:

Price:

* - Corresponding Author

[1] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities Planning, Fourth ed. New York: John Wiley & SONS, INC., (2010).

Google Scholar

[2] A. R. McKendall, J. Shang, and S. Kuppusamy, Simulated annealing heuristics for the dynamic facility layout problem, Comput. Oper. Res., pp.2431-2444, 2006, vol. 33.

DOI: 10.1016/j.cor.2005.02.021

Google Scholar

[3] G. Moslemipour and T. S. Lee, Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems, pp.1849-1860, 2012, vol. 23.

DOI: 10.1007/s10845-010-0499-8

Google Scholar

[4] S. Vitayasak and P. Pongcharoen, Backtracking Search Algorithm for designing a robust machine layout, WIT Trans. Eng. Sci. , pp.411-420, 2014, vol. 95.

DOI: 10.2495/cceee140471

Google Scholar

[5] P. Corry and E. Kozan, Ant Colony Optimisation for machine layout problems, Comput. Optim. Appl., pp.287-310, 2004, vol. 28.

DOI: 10.1023/b:coap.0000033965.99769.98

Google Scholar

[6] T. Yang and A. P. Brett, Flexible machine layout design for dynamic and uncertain production environments, pp.49-64, 1998, vol. 108.

Google Scholar

[7] E. M. Loiola, N. M. M. d. Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querdo, A survey for the quadratic assignment problem, Eur. J. Oper. Res., pp.657-690, 2007, vol. 176.

DOI: 10.1016/j.ejor.2005.09.032

Google Scholar

[8] P. Pongcharoen, W. Chainate, and C. Samranpun, Exploration of Genetic Parameters and Operators through Travelling Salesman Problem, pp.215-222, 2007, vol. 33.

Google Scholar

[9] I. Jithavech and K. K. Krishnan, A simulation-based approach for risk assessment of facility layout designs under stochastic product demands, Int. J. Adv. Manuf. Tech., pp.27-40, 2010, vol. 49.

DOI: 10.1007/s00170-009-2380-5

Google Scholar

[10] J. Balakrishnan, Soluition for the constrainted dynamic facility layout problem, Eur. J. Oper Res, pp.280-286, 1992, vol. 57.

Google Scholar

[11] P. Pongcharoen, C. Hicks, P. M. Braiden, and D. J. Stewardson, Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products, Int. J. Prod. Econ., pp.311-322, 2002, vol. 78.

DOI: 10.1016/s0925-5273(02)00104-4

Google Scholar

[12] M. V. Pillai, I. B. Hunagunda, and K. K. Krishnan, Design of robust layout for dynamic plant layout problems, Comput. Ind. Eng., pp.813-823, 2011, vol. 61.

DOI: 10.1016/j.cie.2011.05.014

Google Scholar

[13] T. Dunker, G. Radons, and E. Westkamper, Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem - discrete optimization, Eur. J. Oper. Res., pp.55-69, 2005, vol. 165.

DOI: 10.1016/j.ejor.2003.01.002

Google Scholar

[14] A. R. McKendall Jr. and A. Hakobyan, Heuristics for the dynamic facility layout problem with unequal-area departments, Eur. J. Oper. Res., pp.171-182, 2010, vol. 201.

DOI: 10.1016/j.ejor.2009.02.028

Google Scholar

[15] T. Ertay, D. Ruan, and U. R. Tuzkaya, Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Inf. Sci., pp.237-262, 2006, vol. 176.

DOI: 10.1016/j.ins.2004.12.001

Google Scholar

[16] K. K. Krishnan, I. Jithavech, and H. Liao, Mitigation of risk in facility layout design for single and multi-period problems, Int. J. Prod. Res., pp.5911-5940, 2009, vol. 47.

DOI: 10.1080/00207540802175337

Google Scholar

[17] R. S. Tavakkoli-Moghaddam, N. Javadian, B. Javadi, and N. Safaei, Design of a facility layout problem in cellular manufacturing systems with stochastic demands, Appl. Math. Comput., pp.721-728, 2007, vol. 184.

DOI: 10.1016/j.amc.2006.05.172

Google Scholar

[18] W. Chan and C. J. Malmborg, A Monte Carlo simulation based heuristic procedure for solving dynamic line layout problems for facilities using conventional material handling devices, Int. J. Prod. Res., pp.2937-2956, 2010, vol. 48.

DOI: 10.1080/00207540902810536

Google Scholar

[19] M. Enea, G. M. Galante, and E. Panascia, The facility layout problem approached using a fuzzy model and a genetic search, J. Intell. Manuf., pp.303-316, 2005, vol. 16.

DOI: 10.1007/s10845-005-7025-4

Google Scholar

[20] S. Vitayasak and P. Pongcharoen, Machine selection rules for designing multi-row rotatable machine layout considering rectangular-to-square ratio, Journal of Applied Operational Research, pp.48-55, 2013, vol. 5.

Google Scholar

[21] J. K. Ousterhout, Tcl and Tk tookit, 2nd ed. Massachusetts: Addison Wesley, (2010).

Google Scholar

[22] D. Goldberg, The design of innovation (Genetic Algorithms and evolutionary computation), First ed. London: Springer, (2002).

Google Scholar

[23] M. Gen, R. Cheng, and L. Lin, Network models and optimization: Multiobjective Genetic Algorithm approach (Decision engineering), 2008 ed. London: Spinger, (2008).

Google Scholar

[24] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design: JOHN WILEY & SONS, INC., (1997).

Google Scholar

[25] S. Vitayasak and P. Pongcharoen, Interaction of crossover and mutation operations for designing non-rotatable machine layout, in Operations Research Network Conference, Bangkok, Thailand, (2011).

Google Scholar

[26] S. Vitayasak and P. Pongcharoen, Interaction of Crossover and Mutation Operations for Designing Non-rotatable Machine Layout, in Proceeding of the Operations Research Network Conference, Bangkok, Thailand, pp.252-260, (2011).

Google Scholar

[27] S. Vitayasak and P. Pongcharoen, Backtracking Search Algorithm for designing robust machine layout WIT Trans. Eng. Sci., pp.411-420, 2014, vol. 95.

DOI: 10.2495/cceee140471

Google Scholar