Methodical Approaches to Describe and Evaluate Uncertainty in the Transmission Behavior of a Sensory Rod

Article Preview

Abstract:

Load carrying mechanical structures like trusses face uncertainty in loading along with uncertainty in their strength due to uncertainty in the development, production and usage. The uncertainty in production of function integrated rods is investigated, which allows monitoring of load and condition variations that are present in the product in every phase of its lifetime. Due to fluctuations of the semi-finished parts, uncertainty in governing geometrical, mechanical and electrical properties such as Young's moduli, lengths and piezoelectric charge constants has to be evaluated. The authors compare the different direct methodical approaches Monte-Carlo simulation, fuzzy and interval arithmetic to describe and to evaluate this uncertainty in the development phase of a simplified, linear mathematical model of a sensory rod in a consistent way. The criterion to compare the methodical approaches for uncertainty analysis is the uncertain mechanical-electrical transmission behavior of the sensory rod, which defines the sensitivity of the sensory compound.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-217

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] H. Hanselka, R. Platz, Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus - Controlling uncertainty in load-bearing systems, Konstruktion, 11/12, VDI-Verlag Düsseldorf, 2010, 55-62.

Google Scholar

[2] B. Denkena, T. Mörke, M. Krüger, J. Schmidt, H. Boujnah, J. Meyer et al., Development and first applications of gentelligent components over their lifecycle, CIRP Journal of Manufacturing Science and Technology 7 (2014) 139-150.

DOI: 10.1016/j.cirpj.2013.12.006

Google Scholar

[3] W. -G. Drossel, S. Hensel, M. Nestler, L. Lachmann, A. Schubert, M. Müller, B. Müller, Experimental and numerical study on shaping of aluminum sheets with integrated piezoceramic fibers, Journal of Materials Processing Technology 214 (2014).

DOI: 10.1016/j.jmatprotec.2013.08.011

Google Scholar

[4] W. -G. Drossel, S. Hensel, M. Nestler, L. Lachmann, Evaluation of Actuator, Sensor, and Fatigue Performance of Piezo-Metal-Composites, IEEE Sensors J. 14 (2014) 2129-2137.

DOI: 10.1109/jsen.2013.2296143

Google Scholar

[5] P. Groche, M. Türk, Smart structures assembly through incremental forming, CIRP Annals Manufacturing Technology 60 (2011) 21-24.

DOI: 10.1016/j.cirp.2011.03.003

Google Scholar

[6] P. Groche, M. Krech, Integration of functions through rotary swaging - New possibilities for the monitoring of states and loads in tubular machine elements: submitted to New Developments in Forging Technology (2015).

Google Scholar

[7] T. Müller-Gronbach, E. Novak, K. Ritter, Monte Carlo-Algorithmen, Springer, Heidelberg, Berlin, (2012).

DOI: 10.1007/978-3-540-89141-3

Google Scholar

[8] G. Alefeld, G. Mayer, Interval analysis: theory and applications, Journal of Computational and Applied Mathematics 121 (2000) 421-464.

DOI: 10.1016/s0377-0427(00)00342-3

Google Scholar

[9] M. Hanss, Applied Fuzzy Arithmetic, Springer, Berlin Heidelberg New York, (2005).

Google Scholar

[10] L. Devroye, L. Györfi, Nonparametric Density Estimation - The L1 View, John Wiley, New York, (1985).

Google Scholar

[11] G. Enss, B. Götz, M. Kohler, A. Krzyzak, R. Platz, Nonparametric estimation of a maximum of quantiles, Electronic Journal of Statistics 8 (2014) 3176-3192.

DOI: 10.1214/14-ejs970

Google Scholar

[12] A. Bretz, S. Calmano, T. Gally, B. Götz, R. Platz, J. Würtenberger, Darstellung passiver, semi-aktiver und aktiver Systeme auf Basis eines Prozessmodells (Representation of Passive, Semi-Active and Active Systems Based on a Prozess Model), unreleased paper by the SFB 805 on http: /www. sfb805. tu-darmstadt. de/media/sfb805/f_downloads/150310_AKIII_ Definitionen_aktiv-passiv. pdf.

Google Scholar

[13] E. Hake, K. Meskouris, Statik der Flächentragwerke - Einführung mit vielen durchgerechneten Beispielen, Springer-Verlag, Berlin, Heidelberg, (2007).

Google Scholar

[14] R. Platz, G. Enss, S. Ondoua, T. Melz, Active stabilization of a slender beam-column under static axial loading and estimated uncertainty in actuator properties, International Conference on Vulnerability and Risk Analysis and Management (2014).

DOI: 10.1061/9780784413609.024

Google Scholar

[15] Datasheet, Piezomechanik GmbH, Piezostapelaktoren PSt 150, http: /www. piezomechanik. com, 07. 04. (2015).

Google Scholar

[16] J. Ferenc, The random variability analysis of the mechanical properties of the selected aluminum alloys, Technical Transaction 3-B (2013) 3-18.

Google Scholar

[17] E. Parzen, On the estimation of a probability density function and the mode, The Annals of Mathematical Statistics 33 (1962) 1065-1076.

DOI: 10.1214/aoms/1177704472

Google Scholar

[18] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics 27 (1956) 832-837.

DOI: 10.1214/aoms/1177728190

Google Scholar

[19] B.C. Arnold, N. Balakrishnan, H.N. Nagaraja, A First Course in Order Statistics, John Wiley & Sons, New York, (1992).

Google Scholar

[20] C. Graham, D. Talay, Stochastic Simulation and Monte Carlo Methods, Springer, Heidelberg New York Dordrecht London, (2013).

Google Scholar