Comparison of a New Passive and Active Technology for Vibration Reduction of a Vehicle under Uncertain Load

Article Preview

Abstract:

This paper presents two new technologies in order to optimize the operation of a con-ventional spring-damper-system. Therefore, the function structure such as the energy flow of a con-ventional system is investigated and optimized. The first resulting technology is the fluid dynamicabsorber (FDA) which is still a passive solution and improves the energy flow of the conventionalspring-damper-system with the help of an absorber with a hydraulic transmission. The second tech-nology is the active air spring damper (AASD) which is an active variant of a spring-damper-systemand optimizes the energy flow by using electrical energy. We use a quarter car model to examine theperformance of our technologies and compare them in the conflict diagram where driving comfort vs.driving safety is shown within the scope of uncertainty. The FDA improves the driving safety at almostthe same comfort. The driving comfort is improved by using the AASD. We also examine the systembehavior at uncertain loads. The results show that they are capable of controlling this uncertainty.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] VDI, Human exposure to mechanical vibrations whole-body vibration, VDI 2057, part 1, Düsseldorf, (2002).

Google Scholar

[2] M. Mitschke, H. Wallentowitz, Dynamik der Kraftfahrzeuge, 5. ed., Springer Vieweg, Berlin, (2014).

Google Scholar

[3] C. Gehb, R. Platz and P. F. Pelz, Entwicklung des SFB-Demonstrators: Definition, Darmstadt, (2014).

Google Scholar

[4] G. Pahl, W. Beitz, Konstruktionslehre, Heidelberg, (2005).

Google Scholar

[5] K. Ehrlenspiel, H. Meerkamm, Integrierte Produktentwicklung, München, (2013).

Google Scholar

[6] VDI 2221, Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Berlin, (1993).

Google Scholar

[7] U. Lindemann, Methodische Entwicklung technischer Produkte, Berlin, (2007).

Google Scholar

[8] N. Drémont, P. Graignic, N. Troussier, R. Whitfield, A. Duffy, A metric to represent the evolution of CAD/analysis models in collaborative design. In: International Conference in Engineering Design (ICED), Copenhagen, (2011).

Google Scholar

[9] H. Hertz, Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, Gesammelte Werke Band 3, J.A. Barth, Leipzig, 1894.

DOI: 10.1090/s0002-9904-1894-00248-1

Google Scholar

[10] P. F. Pelz, P. Hedrich, Unsicherheitsklassifizierung anhand einer Unsicherheitskarte, interner Bericht des Instituts für Fluidsystemtechnik, Darmstadt, (2015).

Google Scholar

[11] H. Hanselka, R. Platz, Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus, VDI Konstruktion (2010), Nr. 11/12, pages 55-62.

Google Scholar

[12] T. Eifler, G. Enss, M. Haydn, L. Mosch, R. Platz, H. Hanselka, Approach for a Consistent Description of Uncertainty in Process Chains of Load Carrying Mechanical Systems, Applied Mechanics and Materials (Volume 104), Vol. Uncertainty in Mechanical Engineering (2011).

DOI: 10.4028/www.scientific.net/amm.104.133

Google Scholar

[13] J.P. Den Hartog, Mechanical Vibrations , Dover Publications, 1985, New York.

Google Scholar

[14] T. Corneli, P. F. Pelz, Employing Hydraulic Transmission for Light Weight Dynamic Absorber, 9th IFK Proceedings Vol. 3, Aachen, (2014).

Google Scholar

[15] M. Pyper, W. Schiffer and W. Schneider, ABC - Active Body Control, Verlag Moderne Industrie, Augsburg, (2003).

Google Scholar

[16] A. Bretz, S. Calmano, T. Gally, B. Götz, R. Platz and J. Würtenberger, Darstellung passiver, semiaktiver und aktiver Maßnahmen im SFB 805-Prozessmodell, Preprint, SFB 805, TU Darmstadt, (2015).

Google Scholar

[17] T. Bedarff, P. Hedrich and P. F. Pelz, Design of an Active Air Spring Damper, 9th IFK Proceedings Vol. 3, Aachen, (2014).

Google Scholar

[18] A. Vergé, P. Pöttgen, T. Ederer, L. Altherr and P. F. Pelz, Lebensdauer als Optimierungsziel, OP-Journal, submitted, (2015).

Google Scholar

[19] ISO, Mechanical Vibration - Road Surface Profiles - Reporting of Measured Data, ISO 8608, Geneva, (1995).

Google Scholar

[20] T. Bedarff, P. F. Pelz, Modellbildung des aktiven Luftfederdämpfers und Modellierung mit Dymola, interner Bericht Institut für Fluidsystemtechnik, Darmstadt, (2015).

Google Scholar

[21] B. Heißing, M. Ersoy, Chassis Handbook, Wiesbaden, (2011).

Google Scholar