Influence of Water Cooling and Post-Weld Ageing on Mechanical and Microstructural Properties of the Friction-Stir Welded 6061 Aluminium Alloy Joints

Article Preview

Abstract:

A 6061-T6 aluminium alloy was friction stir welded in submerged water as well as in air cool at a constant traverse speed and different rotational speed in order to investigate the microstructural characterization and mechanical behaviour of the joints. In order to improve the tensile strength of the joints, weldments were studied at different heat treatment processes such as post weld aged condition and solutionized condition. It is observed that, water cooled joints are resulted in enhancing of both strength and ductility with the lower strain hardening ability than the air cooled joints. The width of the hardness distribution varies with the different cooling process of the joints. The highest hardness peak observed to be located in the heat affected zone of the joints. The maximum tensile strength of the joints achieved for welds under water cooled conditions in contrast to air cooled conditions. Moreover, a combination of water cooling and post weld ageing is proven to be the optimal path to improving the microstructural and mechanical properties of the joints with a maximum efficiency of 89.87% of the base metal strength. The microstructural observations of the joints revealed the presence of voids defects for the low rotational speed joints due to the insufficient heat input. The nugget of the higher tensile strength joints were free from defects and showed the fine grained material flow patterns which are constructive to obtain better mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-176

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] R.A. Sielski, Research needs in aluminum structure, Ships. Offshore. Struc. 3(1) (2008), 57-65.

Google Scholar

[2] H. Aydın, A. Bayram, A. Ug˘uz, K.S. Akay, Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state, Mater. Des. 30 (2009) 2211-2221.

DOI: 10.1016/j.matdes.2008.08.034

Google Scholar

[3] A. Ambroziak, M. Korzeniowski, P. Kustroń, M. Winnicki, P. Sokołowski, E. Harapińska, Friction welding of aluminium and aluminium alloys with steel, Adv. Mater. Sci. Eng. 2014 (2014) 1-15.

DOI: 10.1155/2014/981653

Google Scholar

[4] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Inter. J. Mater. Res. 105 (2014) 350-357.

DOI: 10.3139/146.111031

Google Scholar

[5] S.S. Kumaran, S. Muthukumaran, D. Venkateswarlu, G.K. Balaji, S. Vinodh, Eco-friendly aspects associated with friction welding of tube-to-tube plate using an external tool process, Int. J. Sustainable. Eng. 5 (2012) 120-127.

DOI: 10.1080/19397038.2011.570877

Google Scholar

[6] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Joining of AISI 1040 steel to 6082-T6 aluminium alloy by friction welding, J. Adv. Mech. Eng. Sci. 1(1) (2015) 57-64.

DOI: 10.18831/james.in/2015011006

Google Scholar

[7] M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel, in: P.M. Pawar, B.P. Ronge, R. Balasubramaniam, S. Seshabhattar (Eds. ), Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, ICATSA 2016, Springer, Cham, 2018, pp.709-717.

DOI: 10.1007/978-3-319-53556-2_73

Google Scholar

[8] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia. Mater. Sci. 5 (2014) 1107-1113.

DOI: 10.1016/j.mspro.2014.07.404

Google Scholar

[9] T. Osada, K. Sonoya, T. Abe, M. Nakamura, Developing of the aluminum alloy solid state bonding method in atmosphere using high frequency induction heating and ultrasonic vibration Uni. J. Mech. Eng. 4 (2016) 1-7.

DOI: 10.13189/ujme.2016.040101

Google Scholar

[10] A.A. Shirzadi, E.R. Wallach, New approaches for transient liquid phase diffusion bonding of aluminium based metal matrix composites, Mater. Sci. Technol. 13 (1997) 135-142.

DOI: 10.1179/mst.1997.13.2.135

Google Scholar

[11] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev. 54 (2009) 49-93.

DOI: 10.1179/174328009x411136

Google Scholar

[12] D. Venkateswarlu, N.R. Mandal, M.M. Mahapatra, S.P. Harsh, Tool design effects for FSW of AA7039, Weld. J. 92 (2013) 41-47.

Google Scholar

[13] A. Kumar, M.M. Mahapatra, P.K. Jha, N.R. Mandal, V. Devuri, Influence of tool geometries and process variables on friction stir butt welding of Al-4. 5%Cu/TiC in situ metal matrix composites Mater. Des. 59 (2014) 406-414.

DOI: 10.1016/j.matdes.2014.02.063

Google Scholar

[14] B.S. Yigezu, D. Venkateswarlu, M.M. Mahapatra, P.K. Jha, N.R. Mandal, On friction stir butt welding of Al + 12Si/10 wt% TiC in situ composite, Mater. Des. 54 (2014) 1019-1027.

DOI: 10.1016/j.matdes.2013.09.034

Google Scholar

[15] H.K. Mohanty, D. Venkateswarlu, M.M. Mahapatra, P. Kumar, N.R. Mandal, Modeling the effects of tool probe geometries and process parameters on friction stirred aluminium welds, J. Mech. Eng. Autom. 2(4) (2012) 74-79.

DOI: 10.5923/j.jmea.20120204.04

Google Scholar

[16] D. Venkateswarlu, P.N. Rao, M.M. Mahapatra, S.P. Harsha, N.R. Mandal, Processing and optimization of dissimilar friction stir welding of AA 2219 and AA 7039 alloys, J. Mater. Eng. Perform. 24(12) (2015) 4809-4824.

DOI: 10.1007/s11665-015-1779-4

Google Scholar

[17] V. Devuri, M.M. Mahapatra, S.P. Harsha, N.R. Mandal, Effect of shoulder surface dimension and geometries on FSW of AA7039, J. Manuf. Sci. Prod. 14 (2014) 183-194.

DOI: 10.1515/jmsp-2014-0008

Google Scholar

[18] F. Grignon, D. Benson, K.S. Vecchio, M.A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments, Int. J. Impact. Eng. 30 (2004) 1333-1351.

DOI: 10.1016/j.ijimpeng.2003.09.049

Google Scholar

[19] A.H.M.E. Rahman, M.N. Cavalli, Strength and microstructure of diffusion bonded titanium using silver and copper interlayers, Mat. Sci. Eng. A. Struct. 5275 (2010) 189-193.

DOI: 10.1016/j.msea.2010.04.065

Google Scholar

[20] M.M. Cheepu, V. Muthupandi, S. Loganathan, Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer, Mater. Sci. Forum. 710 (2012) 620-625.

DOI: 10.4028/www.scientific.net/msf.710.620

Google Scholar

[21] C.H. Muralimohan, M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A. 47 (2016) 347-359.

DOI: 10.1007/s11661-015-3210-z

Google Scholar

[22] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[23] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia. Mater. Sci. 5 (2014) 1120-1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[24] M. Cheepu, M. Ashfaq, V. Muthupandi, A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel, Trans. Indian. Inst. Met. (2017). https: /doi. org/10. 1007/s12666-017-1114-x.

DOI: 10.1007/s12666-017-1114-x

Google Scholar

[25] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes, Friction stir butt welding, GB patent 9125978. 8. (1991).

Google Scholar

[26] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Mater. Des. 30 (2009) 180-187.

DOI: 10.1016/j.matdes.2008.04.042

Google Scholar

[27] H. Jamshidi Aval, S. Serajzadeh, A study on natural aging behavior and mechanical properties of friction stir-welded AA6061-T6 plates, Int. J. Adv. Manuf. Technol. 71 (2014) 933-941.

DOI: 10.1007/s00170-013-5531-7

Google Scholar

[28] G. Çam, Friction stir welded structural materials: beyond Al alloys, Int. Mater. Rev. 56 (2011) 1-48.

DOI: 10.1179/095066010x12777205875750

Google Scholar

[29] S. Malarvizhi, V. Balasubramanian, Influences of welding processes and post-weld ageing treatment on mechanical and metallurgical properties of AA2219 aluminium alloy joints, Weld. World. 56 (2012) 105-119.

DOI: 10.1007/bf03321386

Google Scholar

[30] L.E. Murr, G. Liu, J.C. Mcclure, A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium, J. Mater. Sci. 33 (1998) 1243-1251.

DOI: 10.1023/a:1004385928163

Google Scholar

[31] A.K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints, Int. J. Adv. Manuf. Technol. 40 (2009) 286-296.

DOI: 10.1007/s00170-007-1325-0

Google Scholar

[32] S. Lim, S. Kim, C.G. Lee, S. Kim, Tensile behavior of friction stir-welded Al 6061-T651, Metall. Mater. Trans. A. 35 (2004) 2829-2835.

DOI: 10.1007/s11661-004-0230-5

Google Scholar

[33] K.N. Krishnan, The effect of post weld heat treatment on the properties of 6061 friction stir welded joints, J. Mater. Sci. 37 (2002) 473-480.

Google Scholar

[34] S. Malarvizhi, V. Balasubramanian, Effects of welding processes and post-weld aging treatment on fatigue behavior of AA2219 aluminium alloy joints, J. Mater. Eng. Perform. 20 (2011) 359-367.

DOI: 10.1007/s11665-010-9682-5

Google Scholar

[35] G. İpekoğlu, S. Erim, B. Gören Kıral, G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove. Mater. 51 (2013) 155-163.

DOI: 10.4149/km_2013_3_155

Google Scholar

[36] G. İpekoğlu, S. Erim, G. Çam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metall. Mater. Trans. A. 45 (2014) 864-877.

DOI: 10.1007/s11661-013-2026-y

Google Scholar

[37] H.J. Zhang, H.J. Liu, L. Yu, Effect of water cooling on the performances of friction stir welding heat-affected zone, J. Mater. Eng. Perform. 21 (2012) 1182-1187.

DOI: 10.1007/s11665-011-0060-8

Google Scholar

[38] J. Yan, Z. Xu, Z. Li, L. Li, S. Yang, Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring, Scripta. Mater. 53 (2005) 585-589.

DOI: 10.1016/j.scriptamat.2005.04.022

Google Scholar

[39] M.A. Mofid, A. Abdollah-zadeh, F.M. Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy, Mater. Des. 36 (2012) 161-167.

DOI: 10.1016/j.matdes.2011.11.004

Google Scholar

[40] F.C. Liu, Z.Y. Ma, Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-t651 aluminum alloy, Metall. Mater. Trans. A. 39A (2008) 2378-2388.

DOI: 10.1007/s11661-008-9586-2

Google Scholar

[41] S. Muthukumaran, S.K. Mukherjee, Two modes of metal flow phenomenon in friction stir welding process, Sci. Technol. Weld. Join. 11 (2006) 337-340.

DOI: 10.1179/174329306x107665

Google Scholar

[42] Y. Zhao, Z. Lu, K. Yan, L. Huang, Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys, Mater. Des. 65 (2015) 675-681.

DOI: 10.1016/j.matdes.2014.09.046

Google Scholar

[43] J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta. Mater. 51 (2003) 713-729.

DOI: 10.1016/s1359-6454(02)00449-4

Google Scholar

[44] L. Hui-jie, Z. Hui-jie, H. Yong-xian, Y. Lei, Mechanical properties of underwater friction stir welded 2219 aluminum alloy, Trans. Nonferrous Met. Soc. China. 20 (2010) 1387-1391.

DOI: 10.1016/s1003-6326(09)60309-5

Google Scholar

[45] A. Scialpi, L.A.C. De Filippis, P. Cavaliere, Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy Mater. Des. 28 (2007) 1124-1129.

DOI: 10.1016/j.matdes.2006.01.031

Google Scholar

[46] S.R. Ren, Z.Y. Ma, L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al– Mg–Si alloy, Scripta. Mater. 56 (2007) 69-72.

DOI: 10.1016/j.scriptamat.2006.08.054

Google Scholar

[47] P. Cavaliere, A.D. Santis, F. Panella, A. Squillace, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding, Mater. Des. 30 (2009) 609-616.

DOI: 10.1016/j.matdes.2008.05.044

Google Scholar

[48] S. Kou, Y. Le, Nucleation mechanism and grain refining of weld metal, Weld. J. 65(4) (1986) 65-70.

Google Scholar

[49] E.O. Hall, Yield point phenomena in metals and alloys, Plenum Press, New York, (1970).

Google Scholar