The Surface and Photoluminescence Properties of GaAs Passivated by Wet Chemical Method

Article Preview

Abstract:

The optical and chemical properties of gallium arsenide (GaAs) surfaces treated by ammonium sulfide ((NH4)2S) treatments were studied via low-temperature photoluminescence (PL). From the PL mapping and Atomic Force Microscope (AFM) results, the treatment process by (NH4)2S is quite effective to remove the oxide layer of GaAs.The PL intensity of (NH4)2S-passivated sample was higher than the untreated sample, and the homogeneity of passivated surface was much better. This strategy provides superior promising passivation method for III-V compound semiconductor material in high-speed and optoelectronic device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-159

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] Simonsmeier T, Ivankov A, Bauhofe W, Sulphur passivation of gallium antimonide surfaces, J. Appl. Phys. 97(2005)084910.

Google Scholar

[2] Brennana B, MilojevicbM, Hinkleb C L, Optimisation of the Ammonium Sulphide (NH4)2S Passivation Process on In0. 53Ga0. 47As, Appl. Surface Sci. 257(2011)4082-4090.

DOI: 10.1016/j.apsusc.2010.11.179

Google Scholar

[3] Lai Po-Hsien, Chen Chun Wei, Kao Chung I, Influences of Sulfur Passivation on Temperature-Dependent Characteristics of an AlGaAs/InGaAs/GaAs, IEEE. 53(2006).

DOI: 10.1109/ted.2005.860654

Google Scholar

[4] Hanbing, Wang Nili, Tang Hengjing, Research of Surface Characteristics of InGaAs Treated by Sulfide, Laser and Infared. (2007)1001-5078.

Google Scholar

[5] R. J. Shul, A. J. Howard, C. B. Vartuli, Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs, J. Vac. Sci. Technol. A 14(1996)1102.

DOI: 10.1116/1.580276

Google Scholar

[6] R. Hakimi, M. C. Amann, Reduction of 1/f carrier noise in InGaAsP/InP heterostructures by sulphur passivation of facets, Semicond. Sci. Technol. 12(1997)778.

DOI: 10.1088/0268-1242/12/7/004

Google Scholar

[7] J. Guo-Ping, H. E. Ruda, The origin of Ga2O3 passivation for reconstructed GaAs (001) surfaces, Appl. Phys. 79(1996)3758.

Google Scholar

[8] J Olvera-Cervantes, J L Plaza, E Dieguez, The role of Ce dopant on the electrical properties of GaSb single crystals, measured by far-infrared Fourier transform spectroscopy, Semicond. Sci. Technol. 5(2009)24.

DOI: 10.1088/0268-1242/24/3/035007

Google Scholar

[9] Fang Chen, Guojun Liu, Zhipeng Wei, Study on the Properties of Gallium Antimonide Surface Passivatied with S2Cl2 Solution, ICOM. (2012)21-24.

DOI: 10.1109/icoom.2012.6316206

Google Scholar

[10] K. Tsuchiya, M. Sakata, A. Funyu, Selenium passivation of GaAs with Se/NH4OH solution, Jpn. J. Appl. Phys. 34(1995)5926-5932.

DOI: 10.1143/jjap.34.5926

Google Scholar

[11] J. Yota, V.A. Burrows, Chemical and electrochemical treatments of GaAs with Na2S and (NH4)2S solutions: a surface chemical study, J. Vac. Sci. Technol. 11(1993)1083-1088.

Google Scholar

[12] Szuber J, Bergignat E, Hollinger G, XPS study o f the surface Fermi level of (NH4)2Sx-passivated GaAs(100) surface, Vacuum. 67(2002)53-58.

DOI: 10.1016/s0042-207x(02)00193-8

Google Scholar

[13] A Salesse, R Alabedra, Y Chen, Improved photoluminescence from electrochemically passivated GaSb, Sci. Technol. 12(1997)413-418.

DOI: 10.1088/0268-1242/12/4/013

Google Scholar

[14] Z. Y. Liu, T. F. Kuecha, D. A. Saulys, A study of GaSb(100) surface passivation by aqueous and nonaqueous solutions, Appl. Phys. Lett. 83(2003)13.

DOI: 10.1063/1.1613994

Google Scholar

[15] Hanbing, Wang Nili, Tang Hengjing, Research of Surface Characteristics of InGaAs Treated by Sulfide, Laser and Infared. (2007)1001-5078.

Google Scholar

[16] Li Xiao Guang, Wang Tong Xiang, Li XiaoBai, Experimental Study of Sulfur Passivation on GaAs FET Saturated Drain-source Current, Journal of Hebei University of Technol. 33(1996).

Google Scholar

[17] P. S. Dutta, K. S. Sangunni, H. L. Bhat, Sulphur passivation of gallium antimonide surfaces, Appl. Phys. Lett. 65(1994)26.

DOI: 10.1063/1.112889

Google Scholar