Tensile and Morphological Properties of Hybrid Montmorillonite/Microcrystalline Cellulose Filled Polylactic Acid Composites: Effect of Filler Ratio

Article Preview

Abstract:

The objective of this study is to investigate the effect of partial replacement of montmorillonite (MMT) with microcrystalline cellulose (MCC) on the tensile and morphology properties of polylactic acid (PLA) composites. PLA composites reinforced with hybrid MMT/MCC were prepared by solution casting. Based on our previous study, tensile strength exhibited that the optimum MMT content in the PLA/MMT is 5 phr. Therefore, partial replacement of MMT with MCC was performed at 5 phr of filler content in order to produce PLA/MMT/MCC hybrid composites. Fourier transform infrared spectroscopy revealed some polar interaction between fillers and PLA matrix. Young’s modulus of the PLA/MMT/MCC hybrid composites increased gradually with increasing MCC filler in the hybrid composites and was higher than PLA/MMT nanocomposites. However, the highest tensile strength of hybrid composites was obtained at 4 phr MMT and 1 phr of MCC filler (~26 MPa), which was lower than optimum formulation of PLA/MMT nanocomposites. Interestingly, the percent elongation at break of the hybrid composites were higher than that of PLA/MMT nanocomposites; increased significantly from ~10 to ~58 %. Field emission scanning electron microscopy indicated the aggregation of MCC and the presence of some cracks in the PLA hybrid composites, resulted in decrease of the tensile strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-275

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] P. Purnama, S.H. Kim, Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polym. Degrad. Stabil. (2014).

DOI: 10.1016/j.polymdegradstab.2014.01.004

Google Scholar

[2] Y.N. He, K. Guo, J.Z. Chen, M.J. Niu, W.J. Wang, X.F. Li, Preparation and Characterization of Poly(lactic acid)/Montmorillonite Nanocomposites via a Masterbatching Method, Adv. Mat. Res. 335-336 (2011) 1493-1498.

DOI: 10.4028/www.scientific.net/amr.335-336.1493

Google Scholar

[3] M.D. Sanchez-Garcia, J.M. Lagaron, On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid, Cellulose 17 (2010) 987-1004.

DOI: 10.1007/s10570-010-9430-x

Google Scholar

[4] L. Petersson, I. Kvien, K. Oksman, Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials, Compos. Sci. Technol. 67 (2007) 2535–2544.

DOI: 10.1016/j.compscitech.2006.12.012

Google Scholar

[5] M. Yourdkhani, T. Mousavand, N. Chapleau, P. Hubert, Thermal, oxygen barrier and mechanical properties of polylactide–organoclay nanocomposites, Compos. Sci. Technol. 82 (2013) 47-53.

DOI: 10.1016/j.compscitech.2013.03.015

Google Scholar

[6] R. Neppalli, V. Causin, C. Marega, M. Modesti, R. Adhikari, S. Scholtyssek, .. & A. Marigo, The effect of different clays on the structure, morphology and degradation behavior of poly (lactic acid), Appl. Clay Sci. 87 (2014) 278-284.

DOI: 10.1016/j.clay.2013.11.029

Google Scholar

[7] B. Ayana, S. Suin, B.B. Khatua, Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay, Carbohydr. Polym. 110 (2014) 430-439.

DOI: 10.1016/j.carbpol.2014.04.024

Google Scholar

[8] R. Arjmandi, A. Hassan, M.K.M. Haafiz, Z. Zakaria, I. M. Inuwa, Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites, Malaysian J. Anal. Sci. 18 (2014) 642-650.

DOI: 10.1016/b978-0-08-100957-4.00002-4

Google Scholar

[9] R. Arjmandi, A. Hassan, S.J. Eichhorn, M.M. Haafiz, Z. Zakaria, F.A. Tanjung, Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites, J. Mater. Sci. 50 (2015) 3118-3130.

DOI: 10.1007/s10853-015-8873-8

Google Scholar

[10] K. Oksman, A.P. Mathew, D. Bondeson, I. Kvien, Manufacturing process of cellulose whiskers/polylactic acid nanocomposites, Compos. Sci. Technol. 66 (2006) 2776-2784.

DOI: 10.1016/j.compscitech.2006.03.002

Google Scholar

[11] H.P.S. Abdul Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani, M. Jawaid, Production and modification of nanofibrillated cellulose using various mechanical processes: a review, Carbohydr. Polym. 99 (2014) 649-665.

DOI: 10.1016/j.carbpol.2013.08.069

Google Scholar

[12] A.P. Mathew, K. Oksman, M. Sain, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), J. Appl. Polym. Sci. 97 (2005) 2014-(2025).

DOI: 10.1002/app.21779

Google Scholar

[13] M.K.M. Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwaa, M.S. Islam, M. Jawaid, Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym. 98 (2013) 139-145.

DOI: 10.1016/j.carbpol.2013.05.069

Google Scholar

[14] P. Qu, Y. Goa, G.F. Wu, L.P. Zhang, Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils, BioResources 5 (2010) 1811-1823.

Google Scholar

[15] L.D. Field, S. Sternhell, J.R. Kalman, Organic structures from spectra, fifth ed., John Wiley & Sons, (2012).

Google Scholar