Prodigiosin Release from an Implantable Biomedical Device: Effect on Cell Viability

Article Preview

Abstract:

This paper present the results of (experiments and models) biosynthesized prodigiosin (PG) released from an implantable biomedical device on the viability of cancer cells. The implantable biomedical devices were obtained from poly-di-methyl-siloxane (PDMS) packages with well-controlled micro-channels and drug storage compartments, along with a drug storing polymer core (which contains thermosensitive Poly (N-isopropylacrylamide)(PNIPA)-based gels). The results were compared with drugs elution from devices loaded with paclitaxelTM. The effects of localized release of PG and paclitaxel (PTx) on cell viability were elucidated via clonogenic assay testing on MDA-MB-231 breast cancer cell line. The effects of PG and PTx released were also tested over a range of temperatures (37-45 ̊C) in which localized hyperthermia is applicable. The trends in the results were analysed using statistical models before discussion their implications for localized treatment of breast cancer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-18

Citation:

Online since:

December 2015

Export:

Price:

* - Corresponding Author

[1] B. Hildebrandt, P. Wust in: W.P. Ceelen (Ed), Peritoneal Carcinomatosis: A Multidisciplinary Approach, Springer, New York, (2007) 185.

Google Scholar

[2] A. Afrassiabi, A.S. Hoffman, L.A. Cadwell, Effect of temperature on the release rate of biomolecules from thermally reversible hydrogel. J of Membrane Sci. 33 (1987) 191-200.

DOI: 10.1016/s0376-7388(00)80377-4

Google Scholar

[3] S. Allan, Hoffman, Jorge Heller, An Introduction to Materials in Medicine, 2nd Edition. Elsevier Inc. (2004) 628 - 637.

Google Scholar

[4] Y. Oni, C. Theriault, A.V. Hoek, W.O. Soboyejo, Effects of temperature on diffusion from PNIPA-based gels in a BioMEMS device for localized chemotherapy and hyperthermia, J. Mater. Sci. and Eng. C. 31 (2011) 67-76.

DOI: 10.1016/j.msec.2010.07.016

Google Scholar

[5] Y. Oni, W.O. Soboyejo, Swelling and diffusion of PNIPA-based gels for localized chemotherapy and hyperthermia. J. of Mater. Sci. and Eng. C. 32 (2012) 24-30.

DOI: 10.1016/j.msec.2011.09.006

Google Scholar

[6] P. Boyle, B. Levin, The World Cancer Report 2008, IARC Press, Lyon, (2008).

Google Scholar

[7] J. Mackay, G.A. Mensah, The atlas of disease and stroke, WHO in collaboration with the centers for disease control and prevention, Non-serial Pblication, 2004. ISBN-13 97892415.

Google Scholar

[8] D. Gutierrez. Cancer Facts and Figures. 2nd Edition. American Cancer Society. (2008).

Google Scholar

[9] D. Needhama, W.M. Dewhirst, The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Advanced Drug Delivery Reviews, ELSEVIER. 53 (2001) 285-305.

DOI: 10.1016/s0169-409x(01)00233-2

Google Scholar

[10] M.C. Perry, Approach to the patient with cancer. In: Goldman L, Schafer AI, eds. Cecil Medicine, 24th ed. Philadelphia, Pa: Saunders Elsevier. (2011) chap 182.

Google Scholar

[11] D. J. Chaplin, S. A. Hill, K. M. Bell and G. M. Toser. Modication of Tumor Blood Flow: Current States and Future Directions, Semin. Radiat. Oncol. 8 (3) (1998) 151-163.

Google Scholar

[12] N. David and W. D. Mark. The Development and Testing of a New Temperature-sensitive Drug Delivery System for the Treatment of Solid Tumors. Advanced Drug Delivery Reviews, 53 (2001) 285-305.

DOI: 10.1016/s0169-409x(01)00233-2

Google Scholar

[13] Fu G., W. O. Soboyejo. Swelling and diffusion characteristics of modified poly (N-isopropylacrylamide) hydrogels. J. of Mater. Sci. and Eng. C. 30 (2010) 8-13.

DOI: 10.1016/j.msec.2009.07.017

Google Scholar

[14] Y. Danyuo, J. D. Obayemi, S. Dozie-Nwachukwu, C. J. Ani, O. S. Odusanya, Y. Oni, N. Anuku, K. Malatesta and W. O. Soboyejo. Prodigiosin Release From an Implantable Biomedical Device: Kinetics of Localized Cancer Drug Release. J. of Mater. Sci. and Eng. C. Vol. 42, (2014).

DOI: 10.1016/j.msec.2014.06.008

Google Scholar

[15] F. Antunes, L. Gentile, L. Tavano, R. C. Oliviero. Rheological characterization of the thermal gelation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide) co-Acrylic Acid. Applied Rheology. 1 (2009).

Google Scholar

[16] C. Yu-Wei and C. Pei-ju. Automatic cell counting for hemocytometers through image processing. World Academy of Science, Engineering and Technology. (2011) 58.

Google Scholar

[17] Nicholson C., Rice M. E. The migration of substances in the neuronal microenvironment, Ann. NY Acad. Sci., 1986; 181, 55-71.

Google Scholar

[18] K. D. Kamble, V. D. Hiwarale. Prodigiosin Production from Serratia Marcescens Strains Obtained from Farm Soil. Int. J. Environmental Sci. 3(1) (2012) 631-638.

Google Scholar

[19] N. Someya, M. Nakajima, H. Hamamoto, I. Yamaguchi and K. Akutsu. Effects of Light Conditions on Prodigiosin Stability in the Biocontrol Bacterium Serratia Marcescensstrain B2. General Plant Pathology. 70 (6) (2004) 367-370.

DOI: 10.1007/s10327-004-0134-7

Google Scholar

[20] LCLGC's CHROMacademy. Crawfordscientific. Quantitative & Qualitative HPLC. Unpublished data. 1-31.

Google Scholar

[21] L.R. Snyder, J. J. Kirkland, and J.L. Glajch, Practical HPLC Method Development (John Wiley & Sons, New York, 2nd ed., 1997), p.180.

DOI: 10.1007/bf02466588

Google Scholar

[22] J. W. Dolan (editor). Why Do Peaks Tail? LC Troubleshooting. LCGC North America. 21(7) (2003) 612.

Google Scholar

[23] K. Buch, T. Peters, T. Nawroth, M. Sanger, H. Schmidberger, and P. Langguth. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay: A comparative study. Radiation Oncology. 7(1) (2012).

DOI: 10.1186/1748-717x-7-1

Google Scholar

[24] S. E. Jones, J. C. Dean, L. A. Young, and S. E. Salmon. The human tumor clonogenic assay in human breast cancer. Journal of Clinical Oncology. 3(1) (1985) 92-97.

DOI: 10.1200/jco.1985.3.1.92

Google Scholar

[25] G. Kishore, N. Leanna, and D. M. Sanford. An improved method for staining cell colonies in clonogenic assays. Cytotechnology. 54(2) (2007) 85-88.

DOI: 10.1007/s10616-007-9083-2

Google Scholar

[26] Y. Xiaodong. Clonogenic Assay. Cancer Biology. Bioprotocol. org. (2012).

Google Scholar

[27] C. X. H. Xu., J. H. Hendry, N. G. Testa, and T. D. Allen. Stromal colonies from mouse marrow: characterization of cell types, optimization of plating efficiency and its effect on radio-sensitivity. J. Cell Sci. 61 (1983) 453-466.

DOI: 10.1242/jcs.61.1.453

Google Scholar

[28] M. Ampama, M. Hobbs, and R. E. Meyn. Methods in molecular medicine, Vol. 110; Chemosensitivity Vol. 1. In vitro assay Humana press Inc., Totowa, NJ. (2005).

Google Scholar

[29] J. P. Mather and P. E. Roberts. Introduction to Cell and Tissue Culture: Theory and Technique. Plenum Press. New York and London. (1998).

Google Scholar

[30] Cell Biolabs, Inc., San Diego, CA. USA. Product data sheet. MDA-MB-231/ GFP cell line. (c) 2010-(2011).

Google Scholar

[31] J. Pomp, J. L. Wike, I. J. Ouwerkerk, C. Hoogstranten, J. Davelaar, P. I. Schrier, J. W. Leer, H. D. Thames and W. A. Brock. Cell density dependent plating efficiency affects outcome and interpretation of colon forming assays. J. of Radiother Oncol R. 40(2) (1996).

DOI: 10.1016/0167-8140(96)01767-7

Google Scholar

[32] N. R. Williams, P. C. Fineran, F. J. Leeper and G. P. Salmond. The biosynthesis anad regulation of bacterial prodiginines. Nat. Rev. Microbial. 4 (2006) 887-889.

DOI: 10.1038/nrmicro1531

Google Scholar

[33] S. K. Pandi, D. Arul, A. S. G. Smiline, I. V. Hairul. S. V. G. Saravanan and R. Raghuraman. Prodigiosin Induced Apoptosis and Inhibited Proliferation in Carcinoma Hsc-2 Cells. Int. J. of Current Research. 3(4) (2011) 151-156.

Google Scholar

[34] H. Tsing-Fen, P. Yu-Ta, C. Show-Mei, L. Shin-Chang, F. Bo-Lin, L. Chien-Hsing, Y. Wan-Ju, C. Jo-Shu and C. Chia-Che. Prodigiosin down-regulates surviving to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicology and Applied Phamacology. 235 (2009).

DOI: 10.1016/j.taap.2008.12.009

Google Scholar

[35] C. J. Gomer, S. W. Ryter, A. Ferrario, N. Rucker, S. Wong and A. M. Fisher. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 56 (1996) 2355-2360.

DOI: 10.1016/b978-0-08-041749-3.50058-9

Google Scholar

[36] C. Theriault, C. Barkey, R. Chandrasekar, E. Paetzell, Y. Oni and W. O. Soboyejo. An in-vitro study of the effects of temperature on breast cancer cells: Experiments and models. Mat. Sci. and Eng. C. 32(8) (2012) 2242-2249.

DOI: 10.1016/j.msec.2012.06.010

Google Scholar

[37] H. Yaoming, G. Haiyan and L. Shuping. Haematoporphyrin Based Photodynamic Therapy Combined with Hyperthermia Provided Effective Therapeutic Vaccine Effect against Colon Cancer Growth in Mice, Int. J. Med. Sci. 9 (2012) 627-633.

DOI: 10.7150/ijms.4865

Google Scholar

[38] B. A. Ogunnaike. Random Phenomena, Fundamentals of Probability & Statistics for Engineers. USA, University of Delaware (2009) 1-1055.

Google Scholar

[39] R. B. Dean and W. J. Dixon Simplified Statistics for small numbers of observations. Anal. Chem. 23 (4) (1951) 636-638.

DOI: 10.1021/ac60052a025

Google Scholar

[40] T-F. Ho, Y-T. Peng, S-M. Chuang, S-C. Lin, B-L. Feng, C-H. Lu, W-J. Yu, J-S Chang and C-C. Chang. Prodigiosin Down-Regulates Survivin to Facilitate Paclitaxel Sensitization in Human Breast Carcinoma Cell Lines. Toxicol Appl. Pharmacol. 235(2) (2009).

DOI: 10.1016/j.taap.2008.12.009

Google Scholar