Industrial Distortion Simulation of Fibre Reinforced Plastics – A Study on Finite Element Discretisation

Article Preview

Abstract:

Due to the occurrence of residual stresses during manufacturing, parts made of carbon fibre reinforced plastics exhibit considerable shape distortions. A finite element simulation tool to predict these distortions is developed in this work. All simulations are conducted using the finite element software LS-DYNA. For an L-profile, different finite element formulations are compared with regard to run time and accuracy. Having identical mesh topology, solid and thick shell elements show comparable run times and results. The layered composition of thick shells leads to a reduction of computational cost, but also increases the error concerning the predicted distortion angle. Finally, employing the insights gained from the mesh study, an actual car body part is studied for the purpose of validation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-279

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] AVK - Industrievereinigung Verstärkte Kunststoffe e.V., Handbuch Faserverbundkunststoffe, Vieweg+Teubner, Wiesbaden, (2010).

DOI: 10.1007/978-3-8348-9355-0

Google Scholar

[2] K. Roll, Application of virtual Methods in Automotive Industry, in: Kollek, R. (Eds. ), Tools and Technologies for Processing Ultra High Strength Materials, Graz, 2011, pp.81-86.

Google Scholar

[3] H. Hahn, Residual stresses in polymer matrix composite laminates, Journal of Composite Materials 10 (4/1976), pp.266-277.

DOI: 10.1177/002199837601000401

Google Scholar

[4] M. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell and K. Potter, Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures, Composites: Part A 37 (2006), pp.522-529.

DOI: 10.1016/j.compositesa.2005.05.019

Google Scholar

[5] L. Khoun, T. Centea and P. Hubert, Characterization methodology of thermoset resins for the processing of composite materials - case study: Cycom 890rtm epoxy resin, Journal of Composite Materials 44 (11/2009), pp.1397-1415.

DOI: 10.1177/0021998309353960

Google Scholar

[6] D. Radford and R. Diefendorf, Shape instabilities in composites resulting from laminate anisotropy, Journal of Reinforced Plastics and Composites 12 (1993), pp.58-75.

DOI: 10.1177/073168449301200104

Google Scholar

[7] J. Svanberg and J. Holmberg, An experimental investigation on mechanisms for manufacturing induced shape distortions in homogeneous and balanced laminates, Composites: Part A 32 (2001), pp.827-838.

DOI: 10.1016/s1359-835x(00)00173-1

Google Scholar

[8] D. Radford and T. Rennick, Separating sources of manufacturing distortion in laminated composites, Journal of Reinforced Plastics and Composites 19 (8/2000), pp.621-641.

DOI: 10.1106/crmp-are5-gvpp-0y7n

Google Scholar

[9] C. Albert and G. Fernlund, Spring-in and warpage of angled composite laminates, Composites Science and Technology 62 (2002), p.1895-(1912).

DOI: 10.1016/s0266-3538(02)00105-7

Google Scholar

[10] D. Stefaniak, E. Kappel, T. Spröwitz and C. Hühne, Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts, Composites: Part A 43 (2012), pp.1081-1091.

DOI: 10.1016/j.compositesa.2012.02.013

Google Scholar

[11] G. Fernlund, N. Rahman, R. Courdji, M. Bresslauer, A. Poursartip, K. Willden and K. Nelson, Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts, Composites: Part A 33 (2002).

DOI: 10.1016/s1359-835x(01)00123-3

Google Scholar

[12] D. Radford, Volume fraction gradient induced warpage in curved composite plates, Composites Engineering 5 (7/1995), pp.923-934.

DOI: 10.1016/0961-9526(95)00033-j

Google Scholar

[13] J. Svanberg and J. Holmberg, Prediction of shape distortions, Part I: FE-implementation of a path dependent constitutive model, Composites: Part A 35 (2004), pp.711-721.

DOI: 10.1016/j.compositesa.2004.02.005

Google Scholar

[14] A. Johnston, R. Vaziri and A. Poursartip, A plane strain model for process-induced deformation of laminated composite structures, Journal of Composite Materials 35 (16/2001), pp.1435-1469.

DOI: 10.1106/yxea-5mh9-76j5-back

Google Scholar

[15] L. Mezeix, A. Seman, M. Nasir, Y. Aminanda, A. Rivai, B. Castanié, P. Olivier and K. Ali, Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process, Composite Structures 124 (2015).

DOI: 10.1016/j.compstruct.2015.01.005

Google Scholar

[16] T. Spröwitz, M. Kleineberg and J. Tessmer, Prozesssimulation in der Faserverbundherstellung - Spring-In, NAFEMS Magazin 1/2008, pp.43-52.

Google Scholar

[17] E. Kappel, D. Stefaniak and G. Fernlund, Predicting process-induced distortions in composite manufacturing - A pheno-numerical simulation strategy, Composite Structures 120 (2015), pp.98-106.

DOI: 10.1016/j.compstruct.2014.09.069

Google Scholar

[18] S. Bapanapalli and L. Smith, A linear finite element model to predict processing-induced distortion in FRP laminates, Composites: Part A 36 (2005), pp.1666-1674.

DOI: 10.1016/j.compositesa.2005.03.018

Google Scholar

[19] Livermore Software Technology Corporation, LS-DYNA Keyword User's Manual Vol. II, (2015).

Google Scholar

[20] J. Whitney and R. McCullough, Micromechanical Materials Modeling, in: Delaware Composites Design Encyclopedia, Technomic Publishing Company, Lancaster, PA, (1990).

Google Scholar

[21] R. Jones, Mechanics of composite materials, 2nd edition, Taylor and Francis, (1999).

Google Scholar

[22] C. Chamis, Simplified composite micromechanics equations for strength, fracture toughness and environmental effects, NASA TM-83696 (1984).

Google Scholar

[23] D. Darrow and L. Smith, Isolating components of processing induced warpage in laminated composites, Journal of Composite Materials 36 (21/2002), pp.2407-2419.

DOI: 10.1177/0021998302036021784

Google Scholar

[24] T. Senner, S. Kreissl, M. Merklein, J. Meinhardt and A. Lipp, A modular modeling approach for describing the in-plane forming behavior of unidirectional non-crimp-fabrics, Production Engineering (2014), pp.1-9.

DOI: 10.1007/s11740-014-0561-z

Google Scholar

[25] C. Liebold, DYNAmap User's manual, DYNAmore GmbH, Stuttgart, (2015).

Google Scholar

[26] A. Haufe, K. Schweizerhof and P. DuBois, Properties & limits: Review of shell element formulations, in: Developer Forum, Filderstadt, (2013).

Google Scholar

[27] T. Borrvall, A heuristic attempt to reduce transverse shear locking in fully integrated hexahedra with poor aspect ratio, in: 7th European LS-DYNA Conference, Salzburg, (2009).

Google Scholar

[28] Information on http: /www. gom. com/de/index. html.

Google Scholar