Forming of Stringer Sheets with Solid Tools

Article Preview

Abstract:

Stringer sheets are bifurcated parts that possess, compared to flat sheet metal parts, a higher stiffness due to their higher geometrical moment of inertia. Currently, the common way of forming spatially curved stringer sheets is hydroforming. This article shows the feasibility of forming stringer sheets by using solid tools with short process times, which is more relevant for the industrial application. A die-bending process with a slot in the punch for the stringer is investigated. Since buckling of the stringer is one of the occurring failure modes, depending on the stringer height, an analytical estimation of the critical stringer height is carried out while considering the bending angle, bending radius and sheet thickness. The subsequent numerical and experimental investigations show a good agreement with the analytical estimation. Finally, a stiffness test is carried out with stringer sheets of different stringer heights. The result of this test underlines the motivation of forming buckling-free stringer sheets with stringers as high as possible. The normalized stiffness increases with rising stringer height until buckling occurs. At this point the stiffness values begin to fall with growing stringer height.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] M. Merklein, M. Johannes, M. Lechner, and A. Kuppert, A review on tailored blanks - Production, applications and evaluation, Journal of Materials Processing Technology, vol. 214, pp.151-164, (2014).

DOI: 10.1016/j.jmatprotec.2013.08.015

Google Scholar

[2] M. A. Ahmetoglu, D. Brouwers, L. Shulkin, L. Taupin, G. L. Kinzel, and T. Altan, Deep drawing of round cups from tailor-welded blanks, Journal of Materials Processing Technology, vol. 53, pp.684-694, (1995).

DOI: 10.1016/0924-0136(94)01767-u

Google Scholar

[3] B. L. Kinsey and J. Cao, An analytical model for tailor welded blank forming, Journal of Manufacturing Science and Engineering, vol. 125, pp.344-351, (2003).

DOI: 10.1115/1.1537261

Google Scholar

[4] S. Panda, V. B. Hernandez, M. Kuntz, and Y. Zhou, Formability analysis of diode-laser-welded tailored blanks of advanced high-strength steel sheets, Metallurgical and Materials Transactions A, vol. 40, pp.1955-1967, (2009).

DOI: 10.1007/s11661-009-9875-4

Google Scholar

[5] A. Ebert, Umformung von Platinen mit lokal unterschiedlichen Dicken, Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen (Fakultät Bergbau, Hüttenwesen und Geowissenschaften), Aachen, (2001).

DOI: 10.15420/ecr.2007.0.1.51

Google Scholar

[6] A. Meyer, B. Wietbrock, and G. Hirt, Increasing of the drawing depth using tailor rolled blanks - Numerical and experimental analysis, International Journal of Machine Tools and Manufacture, vol. 48, pp.522-531, (2008).

DOI: 10.1016/j.ijmachtools.2007.08.003

Google Scholar

[7] R. Kopp, C. Wiedner, and A. Meyer, Flexibly Rolled Sheet Metal and Its Use in Sheet Metal Forming, Advanced Materials Research, vol. 6-8, pp.81-92, (2005).

Google Scholar

[8] G. Bergweiler, Lokale Wärmebehandlung mit Laserstrahlung zur Verbesserung der Umform- und Funktionseigenschaften von hochfesten Stählen, Dissertation, Rheinisch-Westfälischen Technischen Hochschule Aachen (Fakultät für Maschinenwesen), (2013).

DOI: 10.1007/978-3-663-04545-8

Google Scholar

[9] M. Kleiner, M. Geiger, and A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Annals - Manufacturing Technology, vol. 52, pp.521-542, (2003).

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[10] R. D. Ziemian, Guide to stability design criteria for metal structures: John Wiley & Sons, (2010).

Google Scholar

[11] P. Groche, J. Ringler, and T. Abu Shreehah, Bending-rolling combinations for strips with optimized cross-section geometries, CIRP Annals - Manufacturing Technology, vol. 58, pp.263-266, (2009).

DOI: 10.1016/j.cirp.2009.03.051

Google Scholar

[12] F. Bäcker, Formgebung mehrachsig stark gekrümmter Stahlbleche mit lastangepassten Versteifungsrippen, Dissertation, Technische Universität Darmstadt (Institut für Produktionstechnik und Umformmaschinen), (2015).

Google Scholar

[13] P. Groche and F. Bäcker, Springback in stringer sheet stretch forming, CIRP Annals - Manufacturing Technology, vol. 62, pp.275-278, (2013).

DOI: 10.1016/j.cirp.2013.03.117

Google Scholar

[14] C. Dawes, Laser welding: A practical guide: Woodhead Publishing, (1992).

Google Scholar

[15] M. Ertugrul and P. Groche, Hydroforming of Laser Welded Sheet Stringers, Key Engineering Materials, vol. 410-411, pp.69-76, (2009).

DOI: 10.4028/www.scientific.net/kem.410-411.69

Google Scholar

[16] P. Groche, F. Bäcker, and M. Ertugrul, Möglichkeiten und Grenzen der Stegblechumformung, Wt Werkstatttechnik online, vol. Jahrgang 100 H. 10, pp.760-766, (2010).

DOI: 10.37544/1436-4980-2010-10-760

Google Scholar

[17] A. Birkert, S. Haage, and M. Straub, Umformtechnische Herstellung komplexer Karosserieteile. Berlin, Heidelberg: Springer, (2013).

DOI: 10.1007/978-3-662-46038-2

Google Scholar

[18] W. Beitz and K. -H. Küttner, Dubbel-Handbook of Mechanical Engineering: Springer Science & Business Media, (1994).

Google Scholar