A Data-Driven Simulation-Based Optimisation Approach for Adaptive Scheduling and Control of Dynamic Manufacturing Systems

Article Preview

Abstract:

The increasing customisation of products, which leads to higher numbers of product variants with smaller lot sizes, requires a high flexibility of manufacturing systems. These systems are subject to dynamic influences and need increasing effort for the generation of the production schedules and for the control of the processes. This paper presents an approach that addresses these challenges. First, scheduling is done by coupling an optimisation heuristic with a simulation model to handle complex and stochastic manufacturing systems. Second, the simulation model is continuously adapted by real-time data from the shop floor. If, e.g., a machine breakdown or a rush order appears, the simulation model and consequently the scheduling model is updated and the optimisation heuristic adjusts an existing schedule or generates a new one. This approach uses real-time data provided by future cyber-physical systems to integrate scheduling and control and to manage the dynamics of highly flexible manufacturing systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-456

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] J. Mula, D. Peidro, M. Díaz-Madroñero, E. Vicens, Mathematical programming models for supply chain production and transport planning, European Journal of Operational Research 204 (2010) 377-390.

DOI: 10.1016/j.ejor.2009.09.008

Google Scholar

[2] J.T. Lin, C.M. Chen, Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing, Simulation Modelling Practice and Theory 51 (2015) 100-114.

DOI: 10.1016/j.simpat.2014.10.008

Google Scholar

[3] J.H. Ge, H. Gao, Y.P. Wang, P.Q. Fu, C.T. Zhang, Research on Optimization Method of Real-time Available Resources for Dynamic Scheduling, International Journal of Database Theory & Application 7 (2014) 91-98.

DOI: 10.14257/ijdta.2014.7.2.09

Google Scholar

[4] J. Lee, B. Bagheri, H.A. Kao, A Cyber-Physical Systems architecture for Industry 4. 0-based manufacturing systems, Manufacturing Letters 3 (2015) 18-23.

DOI: 10.1016/j.mfglet.2014.12.001

Google Scholar

[5] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, F. Werner, Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria, The International Journal of Advanced Manufacturing Technology 37 (2008).

DOI: 10.1007/s00170-007-0977-0

Google Scholar

[6] D. Quadt, H. Kuhn, A taxonomy of flexible flow line scheduling procedures, European Journal of Operational Research 178 (2007) 686-698.

DOI: 10.1016/j.ejor.2006.01.042

Google Scholar

[7] C.H. Papadimitriou, Computational complexity, in: Encyclopedia of Computer Science, John Wiley and Sons Ltd., Chichester, 2003, pp.260-265.

Google Scholar

[8] V. Gondek, Hybrid flow shop scheduling mit verschiedenen Restriktionen: Heuristische Lösung und LP-basierte untere Schranken, Dissertation, University of Duisburg-Essen, (2011).

Google Scholar

[9] T.E. Morton, D.W. Pentico, Heuristic scheduling systems: with applications to production systems and project management, Wiley, New York, (1993).

Google Scholar

[10] J. Hartmann, T. Makuschewitz, E.M. Frazzon, B. Scholz-Reiter, A genetic algorithm for the integrated scheduling of production and transport systems, in: S. Helber, M. Breitner, D. Rösch, C. Schön, J. -M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, A. Wolter (Eds. ), Operations Research Proceedings 2012. Springer, Berlin/Heidelberg, 2013, pp.533-539.

DOI: 10.1007/978-3-319-00795-3

Google Scholar

[11] M. Kück, B. Scholz-Reiter, A Genetic Algorithm to Optimize Lazy Learning Parameters for the Prediction of Customer Demands, Proceedings of the 12th International Conference on Machine Learning and Applications (ICMLA 2013), IEEE Press, 2013, pp.160-165.

DOI: 10.1109/icmla.2013.183

Google Scholar

[12] M. Freitag, T. Hildebrandt, Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization, submitted to CIRP-Annals - Manufacturing Technology, (2016).

DOI: 10.1016/j.cirp.2016.04.066

Google Scholar

[13] S. Mehta, R. Uzsoy, Predictable scheduling of a single machine subject to breakdowns, International Journal of Computer Integrated Manufacturing, 12 (1999) 15–38.

DOI: 10.1080/095119299130443

Google Scholar

[14] S. Janak, X. Lin, C. Floudas, A new robust optimization approach for scheduling under uncertainty II. Uncertainty with known probability distribution, Computers & Chemical Engineering, 31 (2007) 171-195.

DOI: 10.1016/j.compchemeng.2006.05.035

Google Scholar

[15] S. Van de Vonder, F. Ballestin, E. Demeulemeester, W. Herroelen, Heuristic procedures for reactive project scheduling, Computers & Industrial Engineering, 52 (2007) 11-28.

DOI: 10.1016/j.cie.2006.10.002

Google Scholar

[16] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing systems, Journal of scheduling, 12 (2008) 417-431.

DOI: 10.1007/s10951-008-0090-8

Google Scholar

[17] F. Longo, Emergency simulation: state of the art and future research guidelines, SCS M&S Magazine, 1 (2010) 2010-04.

Google Scholar

[18] J.F. O'kane, J.R. Spenceley, R. Taylor, Simulation as an essential tool for advanced manufacturing technology problems, Journal of Materials Processing Technology, 107 (2000) 412-424.

DOI: 10.1016/s0924-0136(00)00689-0

Google Scholar

[19] J. Banks, J.S. Carson, B.L. Nelson, D.M. Nicol, Discrete-Event System Simulation, Prentice hall, New York, (2000).

Google Scholar

[20] S.K. Jain, V.P. Singh, Water resources systems planning and management, Elsevier, (2003).

Google Scholar

[21] F. Pirard, S. Iassinovski, F. Riane, A simulation based approach for supply network control, International Journal of Production Research, 49 (2011) 7205-7226.

DOI: 10.1080/00207543.2010.518726

Google Scholar

[22] W. Krug, T. Wiedemann, J. Liebelt, B. Baumbach, Simulation and optimization in manufacturing, organization and logistics, in: Proceedings 14th European Simulation Symposium, SCS Europe BVBA, (2002).

Google Scholar

[23] M.C. Fu, Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14 (2002) 192-215.

Google Scholar

[24] L. März, W. Krug, O. Rose, G. Weigert, Simulation und Optimierung in Produktion und Logistik. Praxisorientierter Leitfaden mit Fallbeispielen, Springer, Heidelberg, (2011).

DOI: 10.1007/978-3-642-14536-0

Google Scholar

[25] H.P. Wiendahl, J.W. Breithaupt, Modelling and controlling the dynamics of production systems, Production planning & control, 10 (1999) 389-401.

DOI: 10.1080/095372899233136

Google Scholar

[26] V.V. Prabhu, N.A. Duffie, Nonlinear dynamics in distributed arrival time control of heterarchical manufacturing systems. IEEE Transactions on Control Systems Technology, 7 (1999) 724-730.

DOI: 10.1109/87.799673

Google Scholar