Single Layer Graphene Oxide Sheets-Epoxy Nanocomposites with Greatly Improved Mechanical and Thermal Properties

Article Preview

Abstract:

The single layer graphene oxide (GO) sheets-epoxy nanocomposites were prepared by directly dispersing concentrated GO aqueous colloid into dimethylformamide (DMF), and then incorporating the mixed solution into epoxy resin. The mechanical and thermal properties of the as-prepared nanocomposites were investigated by Notched Izod impact tests and thermogravimetric analysis. Significant improvements in both impact strength and thermal properties were observed for the nanocomposites at very low level of GO loading content. The impact strength of the nonacomposites containing 0.15 wt% GO was 10.66±0.75 MPa, which was 165.84 % higher than that of the pure epoxy resin (4.01±0.52 MPa). The decomposition temperature of the nanocomposites containing 0.3 wt % GO increased about 12 °C. The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

175-179

Citation:

Online since:

December 2011

Export:

Price:

[1] L.Q. Liu, A.H. Barber, S. Nuriel and H.D. Wagner: Adv. Funct. Mater. Vol. 15 (2005), p.975.

Google Scholar

[2] C. Lee, X. Wei, J.W. Kysar and J. Hone: Science Vol. 321 (2008), p.385.

Google Scholar

[3] X. Du, I. Skachko, A. Barker and E.Y. Andrei: Nat. Nanotechnol. Vol. 3 (2008), p.491.

Google Scholar

[4] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An and R.S. Ruoff: Nano Lett. Vol. 8 (2008), p.3498.

Google Scholar

[5] J.J. Liang, Y. Huang, L. Zhang, Y.Wang, Y.F. Ma, T.Y. Guo and Y.S. Chen: Adv. Funt. Mater. Vol. 9 (2009), p.2297.

Google Scholar

[6] H.F. Yang, C.S. Shan, F.H. Li, Q.X. Zhang, D.X. Han and L. Niu: J. Mater. Chem Vol. 19 (2009), p.8856.

Google Scholar

[7] Y.X. Xu, W.J. Hong, H. Bai, Li Chun and G.Q. Shi: Carbon Vol. 47 (2009), p.3538.

Google Scholar

[8] D.Y. Cai and M. Song: J. Mater. Chem Vol. 20 (2010), p.7906.

Google Scholar

[9] X.F. Zhou and Z.P. Liu: Chem. Commun. Vol. 46 (2010), p.2611.

Google Scholar

[10] S. Park and R.S. Ruoff: Nat Nanotechnol. Vol. 4 (2009), p.217.

Google Scholar

[11] H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff and Y.H. Lee: J. Am. Chem. Soc. Vol. 130 (2008), p.1362.

Google Scholar

[12] H. Kim, A.A. Abdala and C.W. Macosko: Macromolecules Vol. 43 (2010), p.6515.

Google Scholar

[13] S. Jana and W.H. Zhong: Mater. Sci. Eng. Vol. A 525 (2009), p.138.

Google Scholar

[14] Z.C. Wang, C.L. Xu, Y.Q. Zhao, D.D. Zhao, Z. Wang, H.L. Li and K.T. Lau: Mater. Sci. Eng. Vol. A 483-484 (2008), p.289.

Google Scholar

[15] T. Kashiwagi, F. Du, J.F. Douglas, K.I. Winey, R.H. Harris and J.R. Shields: Nat. Mater. Vol. 4 (2005), p.928.

Google Scholar