Effect of Gold Nanoparticles on Fluorescence Properties of Hyperbranched Poly(amido amine)s

Article Preview

Abstract:

Hyperbranched poly (amino amine) s (HPAMAMs), synthesized by Michael addition of 1-(2-aminoethyl) piperazine (AEPZ) and methyl acrylate (MA), can emit blue fluorescence under excitation wavelength. However, the relatively weak fluorescence of HPAMAMs is still an obstacle for its practical applications. Gold is one of the most frequently used metals for fluorescence enhancement. In this research, the influence of gold nanoparticles on fluorescence property of HPAMAMs was investigated by fluorometry. It was found that gold nanoparticles (GNPs) with smaller size (< 5 nm) presented greatly enhanced emission. The GNPs with larger size (~10 nm in diameter) and definite surface plasmon absorption can quench the fluorescence of HPAMAMs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-420

Citation:

Online since:

January 2012

Export:

Price:

[1] E. M. Goldys, Fluorescence Applications in Biotechnology and Life Sciences, Wiley-Backwell, (2009).

Google Scholar

[2] N. J. Walker, A technique whose time has come, Science. 296 (2002) 557-559.

DOI: 10.1126/science.296.5567.557

Google Scholar

[3] E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, Z. Gryczynski, Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture, J. Am. Chem. Soc. 129 (2007) 12117-12122.

DOI: 10.1021/ja071981j

Google Scholar

[4] W. Knoben, P. Offermans, S. H. Brongersma, M. Crego-Calama, Metal-induced fluorescence enhancement as a new detection mechanism for vapor sensing, Sens. Actuators B. 148 (2010) 307-314.

DOI: 10.1016/j.snb.2010.04.044

Google Scholar

[5] R. Jin, S. Egusa, N. F. Scherer, Thermally-induced formation of atomic Au clusters and conversion into nanocubes, J. Am. Chem. Soc. 126 (2004) 9900-9901.

DOI: 10.1021/ja0482482

Google Scholar

[6] J. Zheng, J. T. Petty, R. M. Dickson, High quantum yield blue emission from water-soluble Au8 nanodots, J. Am. Chem. Soc. 125 (2003) 7780-7781.

DOI: 10.1021/ja035473v

Google Scholar

[7] M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, Semiconductor nanocrystals as fluorescent biological labels, A. P. Alivisatos, Science. 281 (1998) 2013-(2016).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[8] J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenmann, D. F. Kelley, Photoluminescence from nanosize gold clusters, J. Chem. Phys. 108 (1998) 9137-9144.

DOI: 10.1063/1.476360

Google Scholar

[9] T. Huang, R. W. Murray, Visible luminescence of water-soluble monolayer-protected gold clusters, J. Phys. Chem. B. 105 (2001) 12498-12502.

DOI: 10.1021/jp0041151

Google Scholar

[10] J. Lukomska, J. Malicka, I. Gryczynski, Z. Leonenko, Fluorescence enhancement of fluorophores tethered to different sized silver colloids deposited on glass substrate, J. R. Lakowicz, Biopolymers. 77 (2005) 31-37.

DOI: 10.1002/bip.20179

Google Scholar

[11] F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, Plasmonic enhancement of molecular fluorescence, Nano Lett. 7 (2007) 496-501.

DOI: 10.1021/nl062901x

Google Scholar

[12] G. Jiang; Y. Wang, X. Sun, J. Shen, Synthesis and fluorescence properties of hyperbranched poly(amidoamine)s with high density tertiary nitrogen, Poly. Chem. 1 (2010) 618-620.

DOI: 10.1039/c0py00194e

Google Scholar

[13] C. -C. Huang, Z. Yang, K. -H. Lee, H. -T. Chang, Angew. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II), Angew. Chem. Int. Ed. 46(2007) 6824-6828.

DOI: 10.1002/anie.200700803

Google Scholar

[14] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system, Chem. Commun. 6 (1994) 801-802.

DOI: 10.1039/c39940000801

Google Scholar

[15] A. C. Templeton, W. P. Wuelfing, R. W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res. 33 (2000) 27-36.

DOI: 10.1021/ar9602664

Google Scholar

[16] Q. Tang, F. Cheng, X. L. Lou, H. J. Liu, Y. Chen, Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent, J. Colloid Interface Sci. 337 (2009) 485-491.

DOI: 10.1016/j.jcis.2009.05.047

Google Scholar

[17] Y. Z. Fu, Y. K. Du, P. Yang, J. R. Li, L. Jiang, Size-controlled synthesis of highly monodisperse gold nanoparticles without a size-selection and long range ordered 2-D arrangement, J. Dispersion Sci. Technol. 28 (2007) 301-307.

DOI: 10.1080/01932690601062150

Google Scholar

[18] T. Ohyashiki, T. Mohri, Ca2+-induced conformation changes of intestinal brush border membranes. Studies with fluorescence probes and sulfhydryl reagent, J. Biochem. 91 (1982) 1575-1581.

DOI: 10.1093/oxfordjournals.jbchem.a133848

Google Scholar

[19] C. Wu, C. Szymanski, J. McNeill, Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles, Langmuir. 22 (2006) 2956-2960.

DOI: 10.1021/la060188l

Google Scholar

[20] J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, D. F. Kelley, Photoluminescence from nanosize gold clusters, J. Chem. Phys. 108 (1998) 9137-9144.

DOI: 10.1063/1.476360

Google Scholar

[21] M.R.V. Sahyun, N. Serpone, Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum, J. Phys. Chem. A. 101 (1997) 9877-9883.

Google Scholar

[22] C. Li, X. Liu, M. Yuan, J. Li, Y. Guo, J. Xu, M. Zhu, J. Lv, H. Liu, Y. Li, Unusual fluorescence enhancement of a novel carbazolyldiacetylene bound to gold nanoparticles, Langmuir. 23(2007) 6754-6760.

DOI: 10.1021/la070110k

Google Scholar

[23] R. M. Clegg, Fluorescence resonance energy transfer, Curr. Op. Anal. Biotech. 6 (1995) 103-112.

Google Scholar