Fabrication of Highly Ordered Carbon Networks as Catalyst Supports for Aerobic Oxidation of Glucose

Article Preview

Abstract:

Highly ordered macro- and meso- porous carbon materials were prepared in a facile nanocasting approach using colloidal crystals silica and SBA-15 as starting template, respectively. The synthesized macroporous carbon templated from colloidal silica shows a honeycomb-like morphology and three-dimensionally interconnected networks of macrospores of about 400 nm in diameter. The resulting mesoporous carbon derived from SBA-15 templates exhibits high specific area (1206m2/g), large pore volume (1.097cc/g) and uniform pore size distribution (3.64 nm). These carbon materials were employed to aerobic oxidation of glucose as support of Au NPs catalyst. 2wt% Au NPs/mesoporous carbon shows high catalytic activity due to highly dispersion of Au NPs resulting from the confinement effects of mesoporous carbon.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1186-1192

Citation:

Online since:

February 2012

Export:

Price:

[1] M. Kang, S. H. Yi, H. I. Lee, J. E. Yie, J. M. Kim: Chem. Commun. Vol. (2002),P. 1944.

Google Scholar

[2] Z. Yang, Y. Xia, R. Mokaya: Adv. Mater. Vol. 16 (2004),P. 727.

Google Scholar

[3] J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim: Chem. Commun. Vol. (1999),P. 2177.

Google Scholar

[4] M. E. Davis: Nature Vol. 417 (2002),P. 813.

Google Scholar

[5] B. Fang, M. Kim, S.-Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko, J.-S. Yu: J. Mater. Chem. Vol. 21 (2011),P. 8742.

Google Scholar

[6] B. Sakintuna, Y. Yürüm: Ind. Eng. Chem. Res. Vol. 44 (2005),P. 2893.

Google Scholar

[7] A. B. Fuertes: J. Mater. Chem. Vol. 13 (2003),P. 3085.

Google Scholar

[8] Q. Hu, Y. Lu, J. Tang, M. Cai, Google Patents, (2011).

Google Scholar

[9] J. C. Groen, L. A. A. Peffer, J. Pérez-Ramírez: Microporous and Mesoporous Materials Vol. 60 (2003),P. 1.

Google Scholar

[10] S. Gregg, K. Sing, Adsorption, Surface Area and Porosity, Academic Press, London (1982).

Google Scholar

[11] D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita: Chem. Mater. Vol. 12 (2000),P. 3397.

Google Scholar

[12] R. Ryoo, S. H. Joo, S. Jun: The Journal of Physical Chemistry B Vol. 103 (1999),P. 7743.

Google Scholar

[13] L. Zhou, H. Li, C. Yu, X. Zhou, J. Tang, Y. Meng, Y. Xia, D. Zhao: Carbon Vol. 44 (2006),P. 1601.

Google Scholar

[14] C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, F. Schüth: Chem. Mater. Vol. 17 (2005),P. 355.

Google Scholar

[15] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki: J. Am. Chem. Soc. Vol. 122 (2000),P. 10712.

DOI: 10.1021/ja002261e

Google Scholar

[16] W. Stober, A. Fink, E. Bohn: J. Colloid Interface Sci. Vol. 26 (1968),P. 62.

Google Scholar

[17] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky: Science Vol. 279 (1998),P. 548.

Google Scholar

[18] M. Jazdzewska, M. M. Śliwinska-Bartkowiak, A. I. Beskrovnyy, S. G. Vasilovskiy, S. W. Ting, K. Y. Chan, L. Huang, K. E. Gubbins: Phys. Chem. Chem. Phys. Vol. 13 (2011),P. 9008.

DOI: 10.1039/c0cp02797a

Google Scholar