Molecular Dynamics Simulation of the Ablation Process in Ultrashort Pulsed Laser Machining of Polycrystalline Diamond

Article Preview

Abstract:

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-356

Citation:

Online since:

April 2012

Export:

Price:

[1] P.J. Heath: J. Mater. Process. Technol., Vol. 116 (2001), pp.31-38.

Google Scholar

[2] J.P. Davim: J. Mater. Process. Technol., Vol. 128 (2002), pp.100-105.

Google Scholar

[3] P.L. Tso, Y.G. Liu: Int. J. Mach. Tool Manufact., Vol. 42 (2002), pp.331-334.

Google Scholar

[4] D.A. Axinte, D.S. Srinivasua, M.C. Konga and P.W. Butler-Smitha: Int. J. Mach. Tools Manufact., Vol. 49 (2009), pp.797-803.

Google Scholar

[5] D. Wang, W.S. Zhao, L. Gu, X.M. Kang: J. Mater. Process. Technol., Vol. 211 (2011), pp.3-11.

Google Scholar

[6] H. Ohfujia, T. Okuchib, S. Odakec, H. Kagic, H. Sumiyad, T. Irifunea: Diamond Relat. Mater., Vol. 19 (2010), pp.1040-1051.

Google Scholar

[7] A. Okabe, B. Boots, K. Sugihara: Spatial Tessellations Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, Chichester, U.K., (1992).

DOI: 10.1002/bimj.4710360203

Google Scholar

[8] R.E. Jones, C.J. Kimmer: Phys. Rev. B, Vol. 81 (2010), p.094301.

Google Scholar

[9] D.C. Rapaport: The Art of Molecular Dynamics Simulation, Cambridge University Press, England, (2004).

Google Scholar

[10] Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei: J. Phys. Chem. C, Vol. 114 (2010), pp.5686-5699.

Google Scholar

[11] J. Tersoff: Phys. Rev. Lett., Vol. 61 (1988), p.2879–2882.

Google Scholar

[12] L. Verlet: Phys. Rev., Vol. 159 (1967), pp.98-103.

Google Scholar

[13] S. Plimpton: J. Comp. Phys., Vol. 117 (1995), pp.1-19.

Google Scholar