Dilute Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover into Fermentable Sugars

Article Preview

Abstract:

The pretreatment of corn stover with dilute sulfuric acid has been investigated by varying the acid concentration (0.5%-1.25%(w/w)) and the temperature (130-160°C). The pretreatment is aimed at improving enzymatic hydrolysis and increasing the fermentability of the biomass. Given the overall sugar yield, the most favourable pretreatment condition was performed with 0.75% sulfuric acid at 150°C for 30min and then with an enzyme loading of cellulase 15 FPU per gram of cellulose, and it resulted in a total of 49.74g glucose and xylose from 100g dry corn stover. The fiber physical feature, structure and property of pretreated residues were studied with Scanning Electron Microscope (SEM) and Fourier transform infrared spectroscopy. The SEM pictures indicated that the biomass structure was deformed and its fibers were exposed by the pretreatment. FTIR study showed that lignin and hemicellulose were partially removed during the diluted sulfuric acid pretreatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

2462-2468

Citation:

Online since:

June 2012

Export:

Price:

[1] A. Petersson, M. H. Thomsen, H. Hauggaard-Nielsen, A. B. Thomsen. Biomass Bioenergy. 31, 812 (2007).

Google Scholar

[2] C. E. Wyman. Annu. Rev. Energy Env. 24, 189 (1999).

Google Scholar

[3] C. Piccolo, F. Bezzo. Biomass Bioenergy. 33, 478(2009).

Google Scholar

[4] P. Sannigrahi, A. J. Ragauskas. J. Biobased Mater. Bioenergy. 6, 514 (2011).

Google Scholar

[5] K. A. Gray, L. S. Zhao, M. Emptage. Curr. Opin. Chem. Biol. 10, 141 (2006).

Google Scholar

[6] P. Sassner, M. Galbe, G. Zacchi. Biomass Bioenergy. 32, 422(2008).

Google Scholar

[7] K. L. Kadam, J. D. McMillan. Biomass Bioenergy. 88, 17(2003).

Google Scholar

[8] C. Karunanithy, K. Muthukumarappan. J. Biobased Mater. Bioenergy. 12, 520(2011).

Google Scholar

[9] M. Balat, H. Balat, C. Oz. Prog. Energy Combust. Sci. 34, 551(2008).

Google Scholar

[10] R. P. Chandra, R. Bura, W. E. Mabee, A. Berlin, X. Pan, J. N. Saddler. Adv. Biochem. Eng./Biotechnol. 108, 67 (2007).

Google Scholar

[11] C. S. Gong, N. J. Cao, J. Du, G. T. Tsao. Adv. Biochem. Eng./Biotechnol. 65, 207(1999).

Google Scholar

[12] E. Palmqvist, B. Hahn-Hagerdal. Bioresour. Technol. 74, 25(2000).

Google Scholar

[13] M. Galbe, G. Zacchi. Adv. Biochem. Eng./Biotechnol. 108, 41(2007).

Google Scholar

[14] G. Hu, J. A. Heitmann, O. J. Rojas. Bioresources. 3, 270(2008).

Google Scholar

[15] D. J. Schell, J. Farmer, M. Newman, J. D. McMillan. Appl. Biochem. Biotechnol. 105, 69(2003).

Google Scholar

[16] R. A. Silverstein, Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette, J. Osborne. Bioresour. Technol. 98, 3000(2007).

Google Scholar

[17] C. Luo, D. L. Brink, H. W. Blanch. Biomass Bioenergy. 22,125(2002).

Google Scholar

[18] J. M. Oliva, M. J. Negro, F. Saez, I. Ballesteros, P. Manzanares, A. Gonzalez, M. Ballesteros. Prog. Biotechnol. 41, 1223(2006).

Google Scholar

[19] S. Larsson, E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi, et al. Enzyme Microb. Technol. 24, 151(1999).

Google Scholar