Mechanical and Microstructural Properties of Al-Added ODS Ferritic Steel

Article Preview

Abstract:

18%Cr-oxide dispersion strengthened (ODS) ferritic steels with and without 5%Al have been produced by mechanical alloying and hot-extrusion. The microstructure of the ODS steels has been characterized by means of electron microscopy (SEM, TEM), showing that in the Al-added ODS steel, the semi-coherent and coherent oxide particles are about 75% and 10%, respectively. It was found that the coherency of oxide particles depends on the size of dispersed particles. Tensile tests performed between room temperature and 973 K denote that the ultimate tensile strength of Al-free ODS steel is higher than that of Al-added one. The ductility values of both materials are sufficiently high. Impact tests reveal that the ductile-to-brittle transition temperature of Al-free ODS steel are higher than that of Al-added ODS steel; however, the upper shelf energy of 18%Cr-ODS steel is substantially smaller in comparison to the Al-added one. It is considered that the difference in mechanical properties between Al-free and Al-added ODS steels is caused by the smaller, stable titania + yttria complex oxides dispersed in the Al-free ODS steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

September 2012

Authors:

Export:

Price:

[1] J.H. Lee, R. Kasada, H.S. Cho and A. Kimura: J. ASTM Int. Vol. 6(8) (2009), Paper ID JAI101952.

Google Scholar

[2] J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T. Abe: J. Nucl. Mater. Vol. 417(1–3) (2011), p.1225.

DOI: 10.1016/j.jnucmat.2010.12.279

Google Scholar

[3] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe: J. Nucl. Mater. Vol. 417(1–3) (2011), p.176.

DOI: 10.1016/j.jnucmat.2010.12.300

Google Scholar

[4] R. Kasada, S.G. Lee, J. Isselin, J.H. Lee, T. Omura, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T. Abe: J. Nucl. Mater. Vol. 417(1–3) (2011), p.180.

DOI: 10.1016/j.jnucmat.2010.12.069

Google Scholar

[5] J.H. Lee: Front. Energy Vol. 6(1) (2012), p.29.

Google Scholar

[6] J.H. Lee: Appl. Mech. Mater. Vol. 87 (2011), p.243.

Google Scholar

[7] J.H. Lee: J. Nanosci. Nanotech. Vol. 12(2) (2012), p.1670.

Google Scholar

[8] C. Capdevila, Y.L. Chen, A.R. Jones and H.K.D.H. Bhadeshia: ISIJ Internat. Vol. 43(5) (2003), p.777.

Google Scholar

[9] M.F. Ashby and L.M. Brown: Philos. Mag. Vol. 8 (1963), p.1083.

Google Scholar

[10] P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T. Abe: Acta Mater. Vol. 59 (2011), p.992.

Google Scholar

[11] G.R. Romanoski, L.L. Snead, R.L. Klueh and D.T. Hoelzer: J. Nucl. Mater. Vol. 283–287(1) (2000), p.642.

Google Scholar