Hybrid Simulations: Theory, Applications, and Future Directions

Article Preview

Abstract:

Hybrid simulation is a testing method for examining the seismic response of structures using a hybrid model comprised of both physical and numerical substructures. Because of the unique feature of the method to combine physical testing with numerical simulations, it provides an opportunity to investigate the seismic response of structures in an efficient and economically feasible manner. It is this feature of the method which made it gain widespread use in recent years. This paper presents the theory of the method including an overview of the previous research related to various aspects of the method, an overview of two hybrid simulation applications, and the future directions for transforming the method to its next generation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 639-640)

Pages:

67-95

Citation:

Online since:

January 2013

Export:

Price:

[1] S.N. Dermitzakis and S.A. Mahin, Development of Substructuring Techniques for On-Line Computer Controlled Seismic Performance Testing, UBC/EERC-85/04, Earthquake Engineering Research Center, University of California, Berkeley, (1985).

Google Scholar

[2] M. Nakashima, T. Kaminosono, M. Ishida, and K. Ando, Integration techniques for substructure pseudodynamic testing, Proc. 4th U.S. Natl. Conf. on Earthquake Eng., Palm Springs, Calif., II, 1990, pp.515-524.

Google Scholar

[3] P.S. Schneider and W.C. Roeder, An inelastic substructure technique for the pseudodynamic test method, Earthquake Eng. Struc. Dyn. 23 (1994) 761–775.

DOI: 10.1002/eqe.4290230706

Google Scholar

[4] M. Nakashima and N. Masaoka, Real-time on-line test for MDOF systems, Earthquake Eng. and Struc. Dyn. 28 (1999) 393-420.

DOI: 10.1002/(sici)1096-9845(199904)28:4<393::aid-eqe823>3.0.co;2-c

Google Scholar

[5] G. Mosqueda, M.D. Cortes-Delgado, T. Wang, and M. Nakashima, Substructuring techniques for hybrid simulation of complex structural systems, Proc. 9th U.S. Natl. /10th Canadian Conf. on Earthquake Eng., Toronto (2010).

Google Scholar

[6] K. Takanashi, K. Udagawa, M. Seki, T. Okada, and H. Tanaka, Nonlinear earthquake response analysis of structures by computer-actuator on-line system, Bull. of Earthquake Resistant Struc. Res. Ctr. No. 8, Inst. of Indus. Science, University of Tokyo, Japan (1975).

Google Scholar

[7] G. Magonette, Development and application of large-scale continuous pseudo-dynamic testing techniques. Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences. 359 (2001) 1771-1799.

DOI: 10.1098/rsta.2001.0873

Google Scholar

[8] S. A. Mahin and M. E. Williams, Computer controlled seismic performance testing. Dynamic Response of Structures: Experimentation, Observation, Prediction and Control, ASCE (1980).

Google Scholar

[9] P. B. Shing and S. A. Mahin, Experimental Error Propagation In Pseudodynamic Testing, Earthquake Engineering Research Center, Berkeley, CA, 175 pages, (1983).

Google Scholar

[10] S. -Y. Chang, Explicit pseudodynamic algorithm with unconditional stability, ASCE J. Eng. Mechanics. 128(9) (2002) 935-947.

DOI: 10.1061/(asce)0733-9399(2002)128:9(935)

Google Scholar

[11] S.N. Dermitzakis and S.A. Mahin, Development of Substructuring Techniques for On-Line Computer Controlled Seismic Performance Testing, UBC/EERC-85/04, Earthquake Engineering Research Center, University of California, Berkeley, (1985).

Google Scholar

[12] T.J.R. Hughes, K.S. Pister and R.L. Taylor, Implicit-explicit finite elements in nonlineartransient analysis. Computer Methods in Applied Mechanics and Engineering. 17/18 (Part 1) (1979) 159-182.

DOI: 10.1016/0045-7825(79)90086-0

Google Scholar

[13] K.M. Mosalam, R.N. White and G. Ayala, Response of infilled frames using pseudodynamic experimentation, Earthquake Engineering and Structural Dynamics. 27(6) (1998) 589-608.

DOI: 10.1002/(sici)1096-9845(199806)27:6<589::aid-eqe744>3.0.co;2-k

Google Scholar

[14] Thewalt C.R. and Mahin S.A. Hybrid solution technique for generalized pseudodynamic testing. EERC-87/09, Earthquake Engineering Research Center, UC-Berkeley, (1987).

Google Scholar

[15] H. Hilber, T. Hughes and R. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earth. Eng. & Structural Dynamics. 5(3) (1977) 283-292.

DOI: 10.1002/eqe.4290050306

Google Scholar

[16] U. E. Dorka, Hybrid experimental - numerical simulation of vibrating structures. International Conference WAVE2002. Okayama, Japan (2002).

Google Scholar

[17] V. Bayer, U.E. Dorka, U. Füllekrugc, and J. Gschwilmd, On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results, Aerospace Science and Technology. 9(3) (2005) 223-232.

DOI: 10.1016/j.ast.2005.01.009

Google Scholar

[18] P.B. Shing, M.T. Vannan and E. Cater, Implicit time integration for pseudodynamic tests, Earthquake Engineering and Structural Dynamics. 20(6) (1991) 551-576.

DOI: 10.1002/eqe.4290200605

Google Scholar

[19] P.B. Shing, O.S. Bursi and M.T. Vannan, Pseudodynamic tests of a concentrically braced frame using substructuring techniques, J. Constr. Steel Research. 29(1-3) (1994) 121-148.

DOI: 10.1016/0143-974x(94)90059-0

Google Scholar

[20] A. H. Schellenberg, S. A. Mahin and G. L. Fenves, Advanced Implementation of Hybrid Simulation, PEER Technical Report 2009/104, (2009).

Google Scholar

[21] S. -Y. Chang, Improved numerical dissipation for explicit methods in pseudodynamic tests, Earthquake Engineering and Structural Dynamics. 26(9) (1997) 917-929.

DOI: 10.1002/(sici)1096-9845(199709)26:9<917::aid-eqe685>3.0.co;2-9

Google Scholar

[22] A. Bonelli and O.S. Bursi, Generalized- α methods for seismic structural testing, Earthquake Engineering and Structural Dynamics. 33(10) (2004) 1067-1102.

DOI: 10.1002/eqe.390

Google Scholar

[23] J. Chung and G. M. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method, Journal of Applied Mechanics, ASME. 60(2) (1993) 371-375.

DOI: 10.1115/1.2900803

Google Scholar

[24] S. Campbell and B. Stojadinovic, A system for simultaneous pseudodynamic testing of multiple substructures, Proceedings 6th U.S. Nat. Conf. on Earth. Eng., Seattle, WA (1998).

Google Scholar

[25] E. Watanabe, K. Sugiura, K. Nagata and Y. Suzuka, Development of parallel pseudo-dynamic test system, Proceedings 10th Japan Earth. Eng. Symp., 2 (1998) 2205–2210 (in Japanese).

Google Scholar

[26] E. Watanabe, C.B. Yun, K. Sugiura, D.U. Park, and K. Nagata, On-line interactive testing between KAIST and Kyoto University, Proceedings 14th KKNN Symposium on Civil Engineering, Kyoto, Japan, (2001) 369–374.

Google Scholar

[27] K.C. Tsai, C.C. Yeh, Y.C. Yang, K.J. Wang, and P.C. Chen, Seismic hazard mitigation: internet-based hybrid testing framework and examples, International Colloquium on Natural Hazard Mitigation: Methods and Applications, France (2003).

Google Scholar

[28] B. Spencer, T. Finholt, I. Foster, and C. Kesselman, Neesgrid: a distributed collaboratory for advanced earthquake engineering experimentation and simulation, Proceedings 13th World Conference on Earthquake Eng., Vancouver, Canada; (2004) 1674.

Google Scholar

[29] G. Mosqueda, Continuous Hybrid Simulation with Geographically Distributed Substructures, University of California, Berkeley. PhD. Dissertation: 232 pages, (2003).

Google Scholar

[30] A. Schellenberg, H. Kim, S.A. Mahin and G.L. Fenves, Environment independent implementation of a software framework for fast local and geographically distributed hybrid simulations, Proceedings 14th World Conf. on Earthquake Engineering, Beijing, China (2008).

Google Scholar

[31] M. Nakashima, M. Kato and E. Takaoka, Development of real-time pseudo-dynamic testing, Earthquake Engineering and Structural Dynamics. 21(1) (1992) 79-92.

DOI: 10.1002/eqe.4290210106

Google Scholar

[32] T. Horiuchi, M. Inoue, T. Konno and Y. Namita, Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber, Earthquake Engineering and Structural Dynamics. 28(10) (1999).

DOI: 10.1002/(sici)1096-9845(199910)28:10<1121::aid-eqe858>3.0.co;2-o

Google Scholar

[33] A.P. Darby, A. Blakeborough and M.S. Williams, Real-time substructure test using hydraulic actuator, Journal of Engineering Mechanics, ASCE. 125(10) (1999) 1133-1139.

DOI: 10.1061/(asce)0733-9399(1999)125:10(1133)

Google Scholar

[34] A.P. Darby, A. Blakeborough, and M.S. Williams, Improved control algorithm for real-time substructure testing, Earthquake Engineering and Structural Dynamics. 30(3) (2001)431-448.

DOI: 10.1002/eqe.18

Google Scholar

[35] M. Nakashima and N. Masaoka, Real-time on-line test for MDOF systems. Earthquake Engineering & Structural Dynamics. 28(4) (1999) 393-420.

DOI: 10.1002/(sici)1096-9845(199904)28:4<393::aid-eqe823>3.0.co;2-c

Google Scholar

[36] O. Mercan and J.M. Ricles, Stability and accuracy analysis of outer loop dynamics in real-time pseudodynamic testing of SDOF systems, Earth. Eng. & Structural Dynamics 36: 11 (2007) 1523-1543.

DOI: 10.1002/eqe.701

Google Scholar

[37] P.A. Bonnet, M.S. Williams, and A. Blakeborough, Evaluation of numerical time-integration schemes for real time hybrid testing. Earth. Eng. & Str. Dyn. 37: 13 (2008) 1467-1490.

DOI: 10.1002/eqe.821

Google Scholar

[38] O.S. Bursi, A. Gonzalez-Buelga, L. Vulcan, S.A. Neild and D.J. Wagg, Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing. Earth. Eng. & Str. Dyn. 37: 3 (2008) 339-360.

DOI: 10.1002/eqe.757

Google Scholar

[39] A. Igarashi, H. Iemura, and T. Suwa, Development of substructured shaking table test method. 12th World Conference on Earthquake Engineering. Auckland, New Zealand (2000).

Google Scholar

[40] S. Neild, D. Stoten, D. Drury, and D. Wagg, Control issues relating to real-time substructuring experiments using a shaking table, Earth. Eng. & Str. Dyn. 34: 9 (2005) 1171–1192.

DOI: 10.1002/eqe.473

Google Scholar

[41] S. Lee, E. Parka, K. Mina and J. Park, Real-time substructuring technique for the shaking table test of upper substructures, Engineering Structures 29: 9 (2007) 2219–2232.

DOI: 10.1016/j.engstruct.2006.11.013

Google Scholar

[42] X. Ji, K. Kajiwara, T. Nagae, R. Enokida, and M. Nakashima, A substructure shaking table test for reproduction of earthquake responses of high-rise buildings, Earth. Eng. & Str. Dyn. 38: 12 (2009) 1381–1399.

DOI: 10.1002/eqe.907

Google Scholar

[43] X. Shao, A.M. Reinhorn, and M.V. Sivaselvan, Real-Time Hybrid Simulation using shake tables and dynamic actuators. ASCE J. Str. Eng. 137: 7 (2011) 748–760.

DOI: 10.1061/(asce)st.1943-541x.0000314

Google Scholar

[44] N. Nakata, and M. Stehman, Substructure shake table test method using a controlled mass: formulation and numerical simulation, Earth. Eng. & Str. Dyn., published online Feb. (2012).

DOI: 10.1002/eqe.2169

Google Scholar

[45] H. Krawinkler, F. Parisi, L. Ibarra, A. Ayoub, and R. Medina. Development of a Testing Protocol for Wood Frame Structures, CUREE Publication, No. W-02, California, (2000).

Google Scholar

[46] IEEE Standard 693-2005. Recommended Practice for Seismic Design of Substations. (2006).

Google Scholar

[47] N.M. Newmark, A method of computation for structural dynamics, ASCE J. Eng. Mec. 85: EM3 (1959) 67-94.

Google Scholar

[48] N.V. Nguyen, and U. Dorka, Adaptive error compensation based on online system identification for real-time substructure testing, Proceedings 3rd International Conference on Advances in Experimental Structural Engineering, October 15-16, San Francisco, CA, (2009).

Google Scholar

[49] T. Elkhoraibi, and K.M. Mosalam, Towards error-free hybrid simulation using mixed variables. Earth. Eng. & Str. Dyn. 36: 11 (2007) 1497-1522.

DOI: 10.1002/eqe.691

Google Scholar

[50] S. Takhirov, G. Fenves, E. Fujisaki, and D. Clyde, Ground Motions for Earthquake Simulator Qualification of Electrical Substation Equipment, PEER Report. PEER 2004/08, (2004).

Google Scholar