Highly Birefringent Extruded Elliptical-Hole Photonic Crystal Fiber

Article Preview

Abstract:

Highly birefringent extruded elliptical-hole photonic crystal fibers (PCFs) with single defect and double defect are proposed and investigated, which are supposed to be achieved by extruding conventional triangular-lattice circular-hole PCFs. Comparative research on the birefringence and the confinement loss of the proposed PCFs with single defect and double defect is presented. Simulated results show that the proposed extruded elliptical-hole PCFs with single defect and double defect can be with high birefringence up to the order of 10-2. Confinement loss increases when the ellipticity of the air hole of the proposed PCFs increases, which nevertheless can be overcome by increasing the ring number or the area of the air holes in the fiber cladding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

387-391

Citation:

Online since:

February 2013

Export:

Price:

[1] J. C. Knight, T. A. Birks, S. J. Russel, All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(6): 1547-1549.

DOI: 10.1364/ol.21.001547

Google Scholar

[2] T. A. Birks, J. C. Knigh, S. J. Russel, Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(4): 961-963.

DOI: 10.1364/ol.22.000961

Google Scholar

[3] J. C. Knight, Photonic crystal fibers[J]. Nature, 2003, 424(3): 847-851.

Google Scholar

[4] K. Saitoh, M. Koshiba, Single-polarization single-mode photonic crystal fibers[J]. IEEE Photonics Technol. Lett., 2003, 15(10): 1384-1340.

DOI: 10.1109/lpt.2003.818215

Google Scholar

[5] Z. J. He, Research on rectangular-hole photonic crystal fibers[J]. Acta Photonica Sinica 2011, 40 (4): 583-586.

DOI: 10.3788/gzxb20114004.0583

Google Scholar

[6] P. R. Chaudhuri, V. Paulose, ZHAO C., Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization[J]. IEEE Photonics Technol. Lett., 2004, 16(5): 1301-1303.

DOI: 10.1109/lpt.2004.826219

Google Scholar

[7] W. Belardi, G. Bouwmans, L. Provino, Form-induced birefringence in elliptical hollow photonics crystal fiber with large mode area[J]. J. Quantum Electron. 2005, 41(6): 1558-1564.

DOI: 10.1109/jqe.2005.858793

Google Scholar

[8] M. Sapulak, G. Statkiewicz, J. Olszewski, Experimental and theoretical investigations of birefringent holey fibers with a triple defect[J]. Appl. Opt., 2005, 44(13): 2652-2658.

DOI: 10.1364/ao.44.002652

Google Scholar

[9] Y. Yue, G. Kai, Z. Wang, Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core[J]. IEEE Photonics Technol. Lett., 2006, 18(24): 2638-2640.

DOI: 10.1109/lpt.2006.887330

Google Scholar

[10] M. Antkowiak, R. Kotynski, T. Nasilowski, Phase and group modal birefringence of triple-defect photonic crystal fibers[J]. J. Opt. A-Pure Appl. Opt., 2005, 7(12): 763-766.

DOI: 10.1088/1464-4258/7/12/009

Google Scholar

[11] M. J. Steel, R. M. Osgood, Elliptical-hole photonic crystal fibers, Opt. Lett., 2001, 26(2): 229-231.

DOI: 10.1364/ol.26.000229

Google Scholar

[12] M.J. Steel, R.M. Osgood, Polarization and dispersive progerties of elliptical-hole photonics crystal fibers[J]. J. Lightwave Technol., 2001, 19(4): 495-503.

DOI: 10.1109/50.920847

Google Scholar

[13] K. Saitoh, M. Koshiba, Full-vectorial imaginary distance beam propagation method based on finite element scheme: application to photonic crystal fibers[J]. IEEE J. Quantum Electron., 2002, 38(7): 927-933.

DOI: 10.1109/jqe.2002.1017609

Google Scholar