The Microbial Assisted Leaching of Nickel Laterites Using a Mixed Culture of Chemolithotrophic Microorganisms

Article Preview

Abstract:

Nickel laterite contains metal values but is not capable of participating in the primary chemolithotrophic bacterial oxidation because it contains neither Fe2+ iron nor substantial amount of reduced sulphur. Its metal value can, however, be recovered by allowing the primary oxidation of FeS2, or similar iron/sulphur minerals to provide H2SO4 acid solutions, which solubilise the metal content. This study investigated the possibility of treating nickel laterites using chemolithotrophic microorganisms. Preliminary studies conducted using H2SO4 acid, citric acid and acidified Fe2(SO4)3 gave an insight on the use of chemolithotrophic bacteria in this process,. Results showed that H2SO4 acid performed better, in terms of nickel recovery, than citric acid or acidified Fe2(SO4)3. In the bacterial leaching test works, mixed cultures of Acidithiobacillus ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans were used in the presence of elemental sulphur and FeS2 as energy sources. The sulphur substrate exhibited better effects in terms of bacterial growth, acidification and nickel recovery than the FeS2 substrate. Using response surface methodology, the theoretical optimum conditions for maximum nickel recovery (79.8%) within the conditions studied was an initial pH of 2.0, 63μm particle size and 2.6% pulp density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Pages:

493-496

Citation:

Online since:

May 2009

Export:

Price:

[1] K. Bosecker, in: Fundamental and Applied Hydrometallurgy, edited by R. W. Lawrence, R.M.R. Branion, H.G. Ebner, Elsevier, Oxford (1986), p.367.

Google Scholar

[2] K. A. K. Alibhai, A. W. L. Dudeney, D. J. Leak, S. Agatzini and P. Tzeferis: FEMS Microbiol. Rev. Vol. 11 (1993), p.87.

DOI: 10.1111/j.1574-6976.1993.tb00271.x

Google Scholar

[3] M. Valix, F. Usai and R. Malik: Min. Eng. Vol. 14 (2001), p.197.

Google Scholar

[4] M. Valix, J. Y. Tang and W. H. Cheung: Min. Eng. Vol. 14 (2001), p.1629.

Google Scholar

[5] J.A. Tang and M. Valix: Min. Eng. Vol. 19 (2006), p.1274.

Google Scholar

[6] D. E. Rawlings: Microbial Cell Factories Vol. 4 (2005), p.13.

Google Scholar

[7] G. S. Simate and S. Ndlovu: Adv. Mater. Res. Vol. 20-21 (2007), p.66.

Google Scholar

[8] O. Coto, F. Galizia, E. González, L. Hernández, J. Marrero and E. Donati: Adv. Mater. Res. Vol. 20-21 (2007), p.107.

Google Scholar

[9] G. S. Simate and S. Ndlovu: Int. J. Miner. Process. Vol. 88 (2008), p.31.

Google Scholar

[10] G. E. P. Box, W. G. Hunter and J. S. Hunter: Statistics for Experimenters: An introduction to design, data analysis and model building. John Wiley and Sons, New York (1978).

DOI: 10.1177/014662168000400313

Google Scholar

[11] D. C. Montgomery: Design and Analysis of Experiments, John Wiley and Sons, Inc., New Jersey (2005).

Google Scholar

[12] R. H. Myers and D. C. Montgomery: Response Surface Methodology: Process and product optimization using designed experiments. John Wiley and Sons, Inc., New York (2002).

Google Scholar

[13] D. I. McKenzie, L. Denys and A. Buchanan: Int. J. Miner. Process. Vol. 21(1987), p.275.

Google Scholar

[14] D. E. Rawlings, H. Tributsch and G. S. Hanford: Microbiology Vol. 145 (1999), p.5.

Google Scholar

[15] J-Y. Yu, T. J. McGenity, M. L. Coleman: Chem. Geol. Vol. 175 (2001), p.307.

Google Scholar

[16] G. S. Simate: Bacterial leaching of nickel laterites using chemolithotrophic microorganisms. MSc dissertation, University of the Witwatersrand, Johanesburg, South Africa (2009).

Google Scholar

[17] M. Nemati, J. Lowenadler and S.T.L. Harrison: Appl. Microbiol. Biotechnol. Vol. 53 (2000), p.173.

Google Scholar