Metal - Microbes Interactions: beyond Environmental Protection

Article Preview

Abstract:

Bioremediation can be applied for the treatment of metal/metalloid and radionuclide bearing water streams in order to immobilize the targeted species. Interactions of microbial cells with soluble targeted species may occur during the microbial metabolism and result to the reduction of their mobility and toxicity. The most important metabolically mediated immobilization processes for metal/metalloid and radionuclide species are bioprecipitation and bioreduction. Bioprecipitation includes the transformation of soluble species to insoluble hydroxides, carbonates, phosphates and sulfides as a result of the microbial metabolism. In the case of biological reduction, the cells use the species as terminal electron acceptors in anoxic environments to produce energy and/or reduce the toxicity of the cells microenvironment. These processes can be the basis of technologies for the rehabilitation of contaminated sites both for surface and groundwater aquifers, soils and industrial water streams. Such technologies are recently developed and applied both in pilot and full scale, although the related mechanisms are complicated and not always fully understood.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Pages:

527-532

Citation:

Online since:

May 2009

Authors:

Export:

Price:

[1] L. Diels, M.D. Smet, L. Hooyberghs and P. Corbisier: Molecular Biotechnology Vol. 12 (1999), p.149.

Google Scholar

[2] H. Ehrlich and C.L. Brierley: Microbial Mineral Recovery (Mc Graw Hill, 1990).

Google Scholar

[3] M.G. Gadd and C. White: Trends in Biotechnology Vol. 11 (1993), p.353.

Google Scholar

[4] G.M. Gadd: Geoderma Vol. 122 (2004), p.109.

Google Scholar

[5] S.N. Groudev, I.I. Spasova and P.S. Georgiev: International Journal of Mineral Processing Vol. 62 (2001), p.301.

Google Scholar

[6] V.M. Logan, K.F. Reardon, L.A. Figueroa, J.E.T. McLain and D.M. Ahmann: Water Research Vol. 39 (2005), p.4537.

Google Scholar

[7] J.R. Lloyd and D.R. Lovley: Current Opinion in Biotechnology Vol. 12 (2001), p.248.

Google Scholar

[8] M. Anushree: Environment International Vol. 30 (2004), p.261.

Google Scholar

[9] B.E. Rittmann and P.L. McCarty: Environmental Biotechnology: Principles and applications (2001).

Google Scholar

[10] G.M. Gadd: FEMS Microbiology Reviews Vol. 11 (1993), p.297.

Google Scholar

[11] C. White, J.A. Sayer and G.M. Gadd: FEMS Microbiology Reviews Vol. 20 (1997), p.503.

Google Scholar

[12] J.F. Banfield, S.A. Welch, H. Zhang, T. Thomsen-Ebert and R.L. Penn: Science Vol. 289 (2000), p.751.

Google Scholar

[13] E. Remoudaki, A. Hatzikioseyian, P. Kousi and M. Tsezos: Water Research Vol. 37 (2003), p.3843.

DOI: 10.1016/s0043-1354(03)00306-3

Google Scholar

[14] T. Pümpel, C. Ebner, B. Pernfuß, F. Schinner, L. Diels, Z. Keszthelyi, A. Stankovic, J.A. Finlay, L.E. Macaskie, M. Tsezos and H. Wouters: Hydrometallurgy Vol. 59 (2001), p.383.

DOI: 10.1016/s0304-386x(00)00168-7

Google Scholar

[15] C. White and G.M. Gadd: Microbiology Vol. 144 (1998), p.1407.

Google Scholar

[16] T. Jong and L.P. David: Water Research Vol. 37 (2003), p.3379.

Google Scholar

[17] A.H. Kaksonen, M. -L. Riekkola-Vanhanen and J.A. Puhakka: Water Research Vol. 37 (2003), p.255.

Google Scholar

[18] J.P. Maree and W.F. Strydom: Water Research Vol. 21 (1987), p.141.

Google Scholar

[19] M.D. Tucker, L.L. Barton and B.M. Thomson: Journal of Industrial Microbiology and Biotechnology Vol. 20 (1998), p.13.

Google Scholar

[20] L.E. Macaskie, K.M. Bonthrone and D.A. Rouch: FEMS Microbiology Letters Vol. 121 (1994), p.141.

Google Scholar

[21] L.E. Macaskie and A.C.R. Dean: Enzyme and Microbial Technology Vol. 9 (1987), p.2.

Google Scholar

[22] L.E. Macaskie, C.J. Hewitt, J.A. Shearer and C.A. Kent: International Biodeterioration & Biodegradation Vol. 35 (1995), p.73.

Google Scholar

[23] M.J. Chen and O.J. Hao: Critical Reviews in Environmental Science and Technology Vol. 28 (1998), p.219.

Google Scholar

[24] D.R. Lovley and E.J.P. Phillips: Appl. Environ. Microbiol. Vol. 60 (1994), p.726.

Google Scholar

[25] J. McLean and T.J. Beveridge: Appl. Environ. Microbiol. Vol. 67 (2001), p.1076.

Google Scholar

[26] A. Hatzikioseyian, E. Remoudaki, and M. Tsezos. Biosorption and biological reduction of chromium by microbial biomass in batch and pilot scale rotating biological contactor (RBC). in International Biohydrometallurgy Symposium IBS 2001. 2001: V.S.T. Ciminelli, O. Garcia Jr.

Google Scholar

[27] J.F. Stolz and R.S. Oremland: FEMS Microbiol. Rev. Vol. 23 (1999), p.615.

Google Scholar

[28] F. Tomei, L. Barton, C. Lemanski, T. Zocco, N. Fink and L. Sillerud: Journal of Industrial Microbiology Vol. 14 (1995), p.329.

DOI: 10.1007/bf01569947

Google Scholar

[29] D.R. Lovley and E.J.P. Phillips: Appl. Environ. Microbiol. Vol. 58 (1992), p.850.

Google Scholar

[30] J.L. Uhrie, J.I. Drever, P.J.S. Colberg and C.C. Nesbitt: Hydrometallurgy Vol. 43 (1996), p.231.

Google Scholar

[31] D.R. Lovley, E.E. Roden, E.J.P. Phillips and J.C. Woodward: Marine Geology Vol. 113 (1993), p.41.

Google Scholar

[32] M.D. Tucker, L.L. Barton and B.M. Thomson: Journal of Environmental Quality Vol. 26 (1997), p.1146.

Google Scholar

[33] F. Glombitza: Waste Management Vol. 21 (2001), p.197.

Google Scholar

[34] C. García, D.A. Moreno, A. Ballester, M.L. Blázquez and F. González: Minerals Engineering Vol. 14 (2001), p.997.

Google Scholar

[35] S. Foucher, F. Battaglia-Brunet, I. Ignatiadis and D. Morin: Chemical Engineering Science Vol. 56 (2001), p.1639.

DOI: 10.1016/s0009-2509(00)00392-4

Google Scholar