In Situ Bioremediation of Contaminated Soils in Uranium Deposits

Article Preview

Abstract:

Experimental plots consisting of acidic and alkaline soils heavily contaminated with radionuclides (mainly U and Ra) and non-ferrous metals (mainly Cu, Zn, Cd, Pb) were treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms and leach solutions used to irrigate the soils (mainly acidophilic chemolothotrophic bacteria and diluted sulphuric acid in the acidic soil, and various heterotrophs and bicarbonate and soluble organics in the alkaline soil). The dissolved contaminants were removed from the soil profile through the drainage soil effluents or were transferred to the deeply located soil subhorizon B2 where they were precipitated as the relevant insoluble forms (uranium as uraninite, and the non-ferrous metals as the relevant sulphides) as a result of the activity of the sulphate-reducing bacteria inhabiting this soil subhorizon.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Pages:

533-540

Citation:

Online since:

May 2009

Export:

Price:

[1] A. S. Knox, M. H. Paller, D.D. Reible, X. Ma and I. G. Petrisor: Soil & Sediment Contamination Vol 17 (2008), p.516.

DOI: 10.1080/15320380802306610

Google Scholar

[2] J. L. Osiensky and R. E. Williams: Ground Wat. Mont. Rev. Vol 10 (1990), p.107.

Google Scholar

[3] E.J.P. Phillips, E. R. Landa abd D.R. Lovley: J. Ind. Microbiol. Vol. 14 (1995), p.203.

Google Scholar

[4] C.N. Mulligan, R. Yong and B. Gibbs: J. Hazard. Mater. Vol. 85 (2001), p.145.

Google Scholar

[5] Y. Suzuki and T. Suko: J. Miner. Petrol. Sci. Vol 101 (2006), p.299.

Google Scholar

[6] S.N. Groudev, I.I. Spasova, M.V. Nicolova and P.S. Georgiev; in: ConSoil 2005, Lecture Session D. 13, Bordeaux, 3 - 7 October 2005, http: /www. consoil. de.

Google Scholar

[7] R.E. Hinchee, J.J. Means and D.R. Burris (Eds. ): Bioremediation of Inorganics (Battele Press, Columbus, Ohio 1995).

Google Scholar

[8] U.S. Environmental Protection Agency: Description and Sampling of Contaminated Soils - A Field Pocket Guide (EPA/625/12 - 91/002 Technology Transfer, Centre for Environmental Research Information, USEPA, Cincinnati, Ohio 1991).

Google Scholar

[9] A.A. Sobek, W.A. Schuller, J.R. Freemen and R.M. Smith: Field and Laboratory Methods Applicable to Overburden and Mine Soils, USEPA Report 600/2 - 78 - 054, Cincinnati, Ohio (1978).

Google Scholar

[10] P.S. Georgiev and S.N. Groudev, in: 12th Conference on Environment and Mineral Processing (VŠB - Technical University of Ostrava, Czech Republic, 5 - 7 June 2008, Part I, p.47).

Google Scholar

[11] S.N. Groudev, I.I. Spasova, M.V. Nicolova and P.S. Georgiev; in: Methods and Techniques for Clean-up Contaminated Sites, edited by M. Annable, M. Teodorescu, P. Hlavinek and L. Diels, NATO Science for Peace and Security Series - C: Environmental Security, p.25, Springer, Dordrecht (2008).

DOI: 10.1007/978-1-4020-6875-1

Google Scholar

[12] G Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri and H. Nitsche: Radiochimica Acta Vol. 89 (2001), p.511.

DOI: 10.1524/ract.2001.89.8.511

Google Scholar

[13] R.J. Finch and T. Murakami, in: Uranium: Mineralogy, Geochemistry and the Environment, edited by P.C. Burns and R.J. Finch, Reviews in Mineralogy, Mineralogical Society of America, Washington D.C., Vol 38 (1999), p.91.

DOI: 10.1180/s0026461x00025639

Google Scholar

[14] S.N. Groudev: Microbiological Transformations of Mineral Raw Materials, DSc Thesis, University of Mining and Geology, Sofia (1990).

Google Scholar

[15] D.R. Lovley, E.J.P. Phillips, Y.A. Gorby and E.R. Landa: Nature Vol. 350 (1991), p.413.

Google Scholar

[16] R.T. Anderson, H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe and D.R. Lovley: Appl. Environ. Microbiol. Vol 69 (2003), p.5884.

DOI: 10.1128/aem.69.10.5884-5891.2003

Google Scholar

[17] J.M. Senko, J.D. Istok, J.M. Sulfita and L.R. Krumholz: Environ. Sci. & Technology Vol. 26 (2002), p.1491.

Google Scholar

[18] K.T. Finneran, M.E. Housewright and D.R. Lovley: Environ. Microbiol. Vol. 2 (2002), p.510.

Google Scholar

[19] D.A. Elias, J.M. Senko and L.R. Krumholz: J. Microbiol. Methods Vol. 53 (2003), p.343.

Google Scholar

[20] S.C. Brooks, J.K. Fredrickson, S.L. Carroll, D.W. Kennedy, J.M. Zachara, A.E. Plymale, S.D. Kelly, K.M. Kemner and S. Fendorf: Environ. Sci. & Technology Vol. 37 (2003), p.1850.

DOI: 10.1021/es0210042

Google Scholar

[21] J.M. Wan, T.K. Tokunaga, E. Brodie, Z.M. Wang, Z.P. Zheng, D. Herman, T.C. Hazen, M.K. Firestone and S.R. Sutton: Environ. Sci. & Technology Vol. 39 (2005), p.6162.

DOI: 10.1021/es048236g

Google Scholar

[22] I. Ortiz-Bernad, R.T. Anderson, H.A. Vrionis and D.R. Lovley: Appl. Environ. Microbiol. Vol. 70 (2004), p.7558.

Google Scholar

[23] H.A. Vrionis, R.T. Andeson, I. Ortiz-Bernad, K.R. O'Neill, C.T. Resch, A.D. Peacock, R. Dayvault, D.C. White, P.E. Long and D.R. Lovley: Appl. Environ. Microbiol. Vol. 71 (2005), p.6308.

DOI: 10.1128/aem.71.10.6308-6318.2005

Google Scholar