Morphology and Mechanical Properties of Natural Rubber-PCL Core-Shell/PLA Composites

Article Preview

Abstract:

Natural rubber (NR)/Polycaprolactone (PCL) core-shell (NR-ad-PCL), from admicellar polymerization, was as an impact modifier for the composites. PLA was mixed with NR-ad-PCL with different NR-ad-PCL contents at 5, 10, 15 and 20 wt%. PLA-based composites were prepared by co-rotating twin screw extruder. The morphology of the composites was observed by Field emission scanning electron microscope (FE-SEM). Mechanical properties of the composites were investigated by dynamic mechanical analyzer and pendulum impact tester. The impact strength of the PLA filled with NR-ad-PCL increased while modulus of the PLA composites decreased with increasing rubber contents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

745-748

Citation:

Online since:

August 2013

Export:

Price:

[1] Y. Long, D. Katherine, L. Lin, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31(2006) 576–602.

Google Scholar

[2] S. Bourbigot, G. Fontaine, S. Bellayer, R. Delobel, Processing and nanodispersion: A quantitative approach for polylactide nanocomposite, Polymer Testing 27 (2008) 2-10.

DOI: 10.1016/j.polymertesting.2007.07.008

Google Scholar

[3] S. Suprakas Ray, B. Mosto, Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world, Progress in Materials Science 50 (2005) 962–1079.

DOI: 10.1016/j.pmatsci.2005.05.002

Google Scholar

[4] J. A. Woods, S. Lambert, T. A. E. Platts-Mills, D. B. Drake, R. F. Edlich, Natural rubber latex allergy: spectrum, diagnostic approach and therapy, The Journal of Emergency Medicine 15 1 (1997) 71-85.

DOI: 10.1016/s0736-4679(96)00256-9

Google Scholar

[5] C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, Z. Peng, Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber, Materials and Design 45 (2013) 198–205.

DOI: 10.1016/j.matdes.2012.09.024

Google Scholar

[6] N. Yooprasert, T. Pongprayoon, P. Suwanmala, K. Hemvichian, G. Tumcharern, Radiation-induced admicellar polymerization of isoprene on silica: Effects of surfactant's chain length, Chem. Eng. Journal 156 (2010) 193–199.

DOI: 10.1016/j.cej.2009.10.022

Google Scholar

[7] P. Rangsunvigit, P. Imsawatgul, N. Na-ranong, J.H. O'Haver, S. Chavadej, Mixed surfactants for silica surface modification by admicellar polymerization using a continuous stirred tank reactor, Chem. Eng. Journal 136 (2008) 288-294.

DOI: 10.1016/j.cej.2007.03.087

Google Scholar

[8] P. M. Karlsson, N. B. Esbjornsson, K. Holmberg, Admicellar polymerization of methyl methacrylate on aluminum pigments, Journal of Colloid and Interface Science 337 (2009) 364–368.

DOI: 10.1016/j.jcis.2009.05.053

Google Scholar

[9] S. Wang, T. Russo, G. G. Qiao, D. H. Solomon, R. A. Shanks, Admicellar polymerization of styrene with divinyl benzene on alumina particles: the synthesis of white reinforcing fillers, J Mater Sci. 41 (2006) 7474-7482.

DOI: 10.1007/s10853-006-0788-y

Google Scholar

[10] X. Liu, M. Dever, N. Fair, R. S. Benson, Thermal and Mechanical Properties of Poly(lactic Acid) and Poly(ethylene/butylene Succinate) Blends, Journal of Environmental Polymer Degradation 5 4 (1997).

Google Scholar

[11] S. Ishida, R. Nagasaki, K. Chino, T. Dong, Y. Inoue, Toughening of Poly(L-lactide) by Melt Blending with Rubbers, Journal of Applied Polymer Science 113 (2009) 558–566.

DOI: 10.1002/app.30134

Google Scholar

[12] Q. Zhao, Y. Ding, B. Yang, N. Ning, Q. Fu, Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA), Polymer testing 32 (2013) 299-305.

DOI: 10.1016/j.polymertesting.2012.11.012

Google Scholar