Effect of Aging Treatments on Microstructure and Exfoliation Corrosion Behavior of Spray Forming 7075 Alloy

Article Preview

Abstract:

Mechanical properties, microstructure and exfoliation corrosion (EXCO) behavior of spraying forming 7075 alloy underwent retrogression and re-aging (RRA) were studied by tensile test, transmission electron microscopy and EXCO test, and compared with those of T6 peak aging and T73 overaging treatments. The results show that after T6 treatment, abundance transgranular dispersive η phases make tensile strength of the alloy reach 760MPa, elongation and EXCO rating are only 4.8% and ED respectively by dint of continuous η phases at grain boundaries and narrow precipitate free zones (PFZ). After T73 treatment, interrupted η phases at grain boundaries and wide PFZ can improve elongation and EXCO resistance, but depressed volume fraction of coarsening transgranular η phases reduce tensile strength to 676MPa. After RRA treatment (120°C/24h + 200°C/10min + 120°C/24h), abundance transgranular dispersive η phases separate out again, η phases at grain boundaries interrupt, and PFZ widen slightly. Tensile strength, elongation and EXCO rating of alloy are 758MPa, 8.4% and EA respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

872-875

Citation:

Online since:

September 2013

Export:

Price:

[1] G. Sha and A. Cerezo: Acta Mater. Vol. 52 (2004), pp.4503-4516.

Google Scholar

[2] S.L. George and R.D. Knutsen: J. Mater. Sci. Vol. 47 (2012), pp.4716-4725.

Google Scholar

[3] R.E. Ricker, E.U. Lee and R. Taylor: Metall. Mater. Trans. A Vol. 44A (2013), pp.1353-1364.

Google Scholar

[4] Y.H. Cai, R.G. Liang, Z.P. Su and J. S Zhang: T. Nonferr. Metal. Soc. Vol. 21 (2011), pp.9-14.

Google Scholar

[5] Q. Wei, B.Q. Xiong and Y.A. Zhang: T. Nonferr. Metal. Soc. Vol. 11 (2001), pp.258-261.

Google Scholar

[6] A.F. Oliverira Jr and M.C. de Barros: Mater. Sci. Eng. A Vol. 379 (2004), pp.321-326.

Google Scholar

[7] B. Cina, U.S. Patent 3, 856, 584. (1974).

Google Scholar

[8] T.S. Srivatsan, G. Guruprasad and V.K. Vasudevan: Mater. Des. Vol. 29 (2008), pp.742-751.

Google Scholar

[9] D. Wang, D.R. Ni and Z. Y Ma: Mater. Sci. Eng. A Vol. 494 (2008), pp.360-366.

Google Scholar

[10] Y. Reda, R. Abdel-Karim and I. Elmahallawi: Mater. Sci. Eng. A Vol. 485 (2008), pp.468-475.

Google Scholar

[11] M.J. Starink and S.C. Wang: Acta Mater. Vol. 51 (2003), pp.5131-5150.

Google Scholar

[12] E. Salamci: Turkish J. Eng. Env. Sci. Vol. 27 (2003), pp.169-176.

Google Scholar

[13] M.C. Reboul and J. Bouvaist: Mater. Corros. Vol. 30 (1979), pp.700-712.

Google Scholar

[14] M. Posada, L.E. Murr, C.S. Niou and D. Roberson: Mater. Charact. Vol. 38 (1997), pp.259-272.

Google Scholar