The Existing of Oxygen Nonstoichiometry in Complex Lithium Oxides

Article Preview

Abstract:

The possibility of oxygen deficiency in lithium-based complex oxides particularly for layered rock salt structures has little attention in the literature, in spite of the importance of these materials as potential lithium battery cathodes. This paper briefly reviewed the existing of oxygen non-stoichiometry in complex lithium oxides and their effect to perfomance of cathodes in lithium ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

438-440

Citation:

Online since:

September 2013

Authors:

Export:

Price:

[1] Goodenough, J.B., Oxygen ordering, peroxide-ion formation, and polarization fluctuations in YBa2Cu3O7-δ. Materials Research Bulletin, 23, (1988) 401-412.

DOI: 10.1016/0025-5408(88)90014-1

Google Scholar

[2] Maguire, E.T., Coats, A.M., M.S. Skakle, J., and West, A.R., Stoichiometry and defect structure of 'NdMnO3'. Journal of Materials Chemistry, 9 (1999) 1337-1346.

DOI: 10.1039/a900734b

Google Scholar

[3] Pasero, D., Reeves, N., Gillie, L.J., and West, A.R., Variable oxygen stoichiometry in layered rock salt cathodes, Lix(Mn,Ni)O2, depending on synthesis conditions. Journal of Power Sources, 174 (2007) 1078-1081.

DOI: 10.1016/j.jpowsour.2007.06.037

Google Scholar

[4] Pasero, D., McLaren, V., Souza, S.d., and West, A.R., Oxygen nonsoichiometry in Li2MnO3: An alternative explanation for its anomalous electrochemical activity. Chemistry of Materials, 17 (2005) 345-348.

DOI: 10.1021/cm040186r

Google Scholar

[5] Robertson, A.D. and Bruce, P.G., Mechanism of Electrochemical Activity in Li2MnO3. Chemistry of Materials, 15 (2003) 1984-1992.

Google Scholar

[6] Kalyani, P., Chitra, S., Mohan, T., and Gopukumar, S., Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. Journal of Power Sources, 80 (1999) 103-106.

DOI: 10.1016/s0378-7753(99)00066-x

Google Scholar

[7] Kim, J.-S., Johnson, C.S., Vaughey, J.T., Thackeray, M.M., Hackney, S.A., Yoon, W., and Grey, C.P., Electrochemical and Structural Properties of xLi2M'O3.(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M' = Ti, Mn, Zr; 0 ≤ x < 0.3). Chemistry of Materials, 16 (2004) 1996-2006.

DOI: 10.1021/cm0306461

Google Scholar

[8] Lu, Z. and Dahn, J.R., Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 ] cells using in situ XRD. Journal of The Electrochemical Society, 149 (2002) A815-A822.

DOI: 10.1149/1.1480014

Google Scholar

[9] Yu, D.Y.W., Yanagida, K., Kato, Y., and Nakamura, H., Electrochemical Activities in Li2MnO3. Journal of The Electrochemical Society, 156 (2009) A417-A424.

Google Scholar

[10] Reimers, J.N. and Dahn, J.R., Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. Journal of The Electrochemical Society, 139 (1992) 2091-2097.

DOI: 10.1149/1.2221184

Google Scholar

[11] Wainwright, D., Method of evaluating relative safety of porous electrode/electrolyte combinations to spot heating. Journal of Power Sources, 54 (1995) 192-197.

DOI: 10.1016/0378-7753(94)02065-b

Google Scholar

[12] Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y., and Takano, M., Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides. Journal of Solid State Chemistry, 110 (1994) 216-225.

DOI: 10.1006/jssc.1994.1162

Google Scholar

[13] Arai, H., Tsuda, M., and Sakurai, Y., Lithium nickelate electrodes with enhanced high-temperature performance and thermal stability. Journal of Power Sources, 90 (2000) 76-81.

DOI: 10.1016/s0378-7753(00)00451-1

Google Scholar

[14] Choi, J. and Manthiram, A., Comparison of the Electrochemical Behaviors of Stoichiometric LiNi1/3Co1/3Mn1/3O2 and Lithium Excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2. Electrochemical and Solid-State Letters, 7 (2004) A365-A368.

DOI: 10.1016/j.ssi.2007.03.002

Google Scholar

[15] M.S. Idris and A.R. West, The effect on cathode performance of oxygen non-stoichiometry and interlayer mixing in layered rock salt LiNi0.8Mn0.1Co0.1O2-δ, Journal of The Electrochemical Society, 159 (2012) A396–A401.

DOI: 10.1149/2.037204jes

Google Scholar