Depolymerization of Lignin with Supercritical Fluids: A Review

Article Preview

Abstract:

Biomass has attracted keen interest as a renewable resource and an environmental friendly material that is essential to realize a sustainable world. Lignin as biomass has been long labeled with waste material. But now the innate chemistry of lignin and a phenolic heteropolymer, has allowed it to make inroads into the high value polymer and natural biomass material industries. Supercritical fluids (SCF) have been shown to be a promising technique for future large-scale biofuel and base-chemicals production, especially for depolymerization production from lignin. This paper reviews the research progress of lignin-depolymerization processes, including effects of process parameters, such as reaction time, temperature, pressure and catalyst, product analysis, and reaction mechanism with different supercritical fluids. The problems of depolymerization with supercritical fluid technology and its development direction are also briefly discussed. Compared with conventional lignin production methods, the SCF technology processes of lignin can produce smaller fragments through breakage of the ether linkages and produce larger fragments through cross linking between the reactive fragments, and the depolymerization lignin processes are typically conducted at mild operating conditions, and the monomeric products have a high economic value because the aromatic products can be readily blended into current transportation fuels or used in chemical industry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 821-822)

Pages:

1126-1134

Citation:

Online since:

September 2013

Export:

Price:

[1] R.E. Smalley: MRS Bull. Vol. 30 (2005), p.412.

Google Scholar

[2] W.S.L. Mok, M.J. Antal Jr.: Ind. Eng. Chem. Res. Vol. 31 (1992), p.1157.

Google Scholar

[3] H. Ando, T. Sakaki and T. Kokusho: Ind. Eng. Chem. Res. Vol. 39 (2000), p.3688.

Google Scholar

[4] T. Sakaki, M. Shibata, T. Miki and H. Hirosue: Energy Fuels. Vol. 10 (1996), p.684.

Google Scholar

[5] M.J. Antal Jr., S.G. Allen and D. Schulman: Ind. Eng. Chem. Res. Vol. 39 (2000), p.4040.

Google Scholar

[6] M. Sasaki, B.M. Kabyemela and R.M. Malaluan: Supercrit. Fluids. Vol. 13 (1998) , p.280.

Google Scholar

[7] Y.Q. Jin, X.M. Ruan and X.S. Cheng: Bioresour. Technol. Vol. 102 (2011) , p.3581.

Google Scholar

[8] M. Sasaki, Z. Fang and Y. Fukushima: Ind. Eng. Chem. Res. Vol. 39 (2000), p.2883.

Google Scholar

[9] E. Dorrestijn, L.J.J. Laarhoven, I.W.C.E. Arends and P. Mulder: J. Anal. Appl. Pyrolysis. Vol. 54 (2000), p.153.

Google Scholar

[10] U. Kües: Wood Production, Wood Technology and Biotechnological Impacts (Micología Aplicada International, Germany 2007).

Google Scholar

[11] D. Stewart: Ind. Crops and Prod. Vol. 27 (2008), p.202.

Google Scholar

[12] W. Gang, W. Li, B.Q. Li and H.K. Chen: Fuel. Vol. 87 (2008), p.552.

Google Scholar

[13] D.S. Wen, H. Jiang, K. Zhang: Sci. Direct. Vol. 19 (2009), p.273.

Google Scholar

[14] X.J. Ping, F.C. zheng: Prog. Chem. Vol. (13) 2001, p.94.

Google Scholar

[15] J. Tao , H.B. Xing: Prog. Chem. Vol. (18) 2006, p.657.

Google Scholar

[16] Z.Z. Qiang: Supercritical Fluid Technology: Principle and Application (Chemical Industry Press, China 2006).

Google Scholar

[17] L. Székely: Supercritical Fluid Extraction (Budapest University of Technology and Economics, Magyarul 2007).

Google Scholar

[18] L.T. Taylor: Supercritical Fluid Extraction (John Wiley & Sons, USA 1996).

Google Scholar

[19] R. Marr, T. Gamse : Chem. Eng. Process. Vol. (39) 2000, p.19.

Google Scholar

[20] C. Aymonier, A.L. Serani, H. Reveron, Y. Garrabos and F. Cansell: J. Supercrit. Fluids. Vol. (38) 2006, p.242.

Google Scholar

[21] P. Azadia, R. O. Inderwildi, R. Farnood: Renew. Sustain. Energy Rev. Vol. 21 (2013), p.506.

Google Scholar

[22] D. K Johnson, H. L Chum, R. Anzick, R. Anzick and M. Baldwin: Thermochem. Biomass Convers. 1988, p.485.

DOI: 10.1007/978-94-009-2737-7_37

Google Scholar

[23] T. Funazukuri, N. Wakao and J.M. Smith: Fuel. Vol. 69 (1990), p.349.

Google Scholar

[24] T. Yokoyama, H. Kazuhiko and A. Nakajima: Sekiyu Gakkaishi. Vol. 41 (1998), p.243.

Google Scholar

[25] K. Barta, T. Matson, M. Fettig and S. Scott: Green Chem. Vol. 12 (2010), p.1640.

Google Scholar

[26] H. Pińkowska, P. Wolak and A. ZÍocińska: Chem. Eng. J. Vol. 187 (2012), p.410.

Google Scholar

[27] E. Minami, H. Kawamoto and S. Saka: Jpn. Wood Res. Soc. Vol. 49 (2003), p.158.

Google Scholar

[28] J. Tsujino, H. Kawamoto and S. Saka: Wood Sci. Technol. Vol. 37 (2003), p.299.

Google Scholar

[29] J. Miller, L. Evans, A. Littlewolf, and D. Trudell: Fuel. Vol. 78(1999), p.1363.

Google Scholar

[30] S. Cheng, l. D'cruz , M. Wang, M. Leitch and C.B. Xu: Energe Fuel. Vol. 24 (2010), p.4659.

Google Scholar

[31] S. Cheng, C. Wilks, Z. Yuan, M. Leitch and C. Xu: Polym. Degrad. Stab. Vol. 97 (2012), p.839.

Google Scholar

[32] Z. Yuan, S. Cheng and M. Leitch: Bioresour. Technol. Vol. 101(2010), p.9308.

Google Scholar

[33] M. Saisu, T. Sato, M. Watanabe, T. Adschiri and K. Arai: Energy Fuel. Vol. 17 (2003), p.922.

Google Scholar

[34] Z. Fang, T. Sato and L. Richard : Bioresour. Technol. Vol. 99 (2008), p.3424.

Google Scholar

[35] O. Kazuhide, U. Mitsuo, T. Seiichi and A. Tadafumi: Fuel Process. Technol. Vol. 85 (2004), p.803.

Google Scholar

[36] O. Kazuhide, S. Ohara, M. Umetsu, S. Takami and T. Adschiri, Disassembly of Waste Lignin in Supercritical Water and p-Cresol Mixtures, in 14th International Conference on the Properties of Water and Steam, Kyoto, Japan, pp.341-344, (2004).

DOI: 10.1016/j.biortech.2007.03.062

Google Scholar

[37] J.A. Gosselink, W. Teunissena, E.G. Dam, E.D. Jong, G. Gellerstedt, E.L. Scott and J.P.M. Sanders: Bioresour. Technol. Vol. 106 (2012), p.173.

Google Scholar

[38] E. Adler: Wood Sci. Technol. Vol. 11(1977), p.169.

Google Scholar

[39] Z. Tang, Y. Zhang and Q. Guo: Ind. Eng. Chem. Res. Vol. 49(2010), p. (2040).

Google Scholar

[40] M. Kleinert, T. Barth: Energy Fuels. Vol. 22(2008), p.1371.

Google Scholar

[41] W. Xu, S. Miller and P. Agrawal: Chem. Sus. Chem. Vol. 5(2012), p.667.

Google Scholar

[42] K. Barta, T. Matson and M. Fettig: Green Chem. Vol. 12(2010), p.1640.

Google Scholar

[43] T. Kleinm, P.S. Virk: Ind. Eng. Chem. Fundam. Vol. 22(1983), p.35.

Google Scholar

[44] B.M. John, T.K. Michaelel: Ind. Eng. Chem. Process Des. Dev. Vol. 25(1986), p.885.

Google Scholar

[45] F.B. Phillip , K.K. Michelle and A.C. Buchananiii: Energy Fuels. Vol. 21(2007), p.3102.

Google Scholar