Transport and Photoelectric Effects in Structures with Ge and SiGe Nanoclusters Grown on Oxidized Si (001)

Article Preview

Abstract:

Crystalline germanium nanoclusters (NCs) are grown by a molecular-beam epitaxy technique on chemically oxidized Si (100) surface at 700oC. Deposition of silicon on the surface with Ge nanoclusters leads to surface reconstruction and formation of polycrystalline diamond-like Si coverage, while nanoclusters core becomes tetragonal SiGe alloy. Possible mechanisms for nanoclusters growth are discussed. Selective photoexcitation of Ge or SiGe nanoclusters or space-charge layer of underlying Si allows to observe two non-equilibrium steady-states with higher and lower conductivity values as compared to the equilibrium one. The persistent photoconductivity (PPC) behaviour was observed after excitation of electron-hole pairs in Si (001) substrate. This effect may be attributed to spatial carrier separation by macroscopic fields in the depletion layer of the near-surface Si. Decreasing of surface conductivity, driven by optical recharging of NCs and Si/SiO2 interface states, is observed in the spectral range from 0.6 to 1.0 eV. Conductivity drop is discussed in the terms of hole accumulation by Ge-NC states enhancing the local-potential variations and, therefore, decreasing the surface conductivity of p-Si.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-19

Citation:

Online since:

November 2013

Export:

Price:

[1] K. Brunner, Si/Ge nanostructures, Rep. Prog. Phys. 65 (2002) 27-72.

Google Scholar

[2] O.G. Schmidt, K. Eberl, Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation, Phys. Rev. B 61 (2000) 13721-13729.

DOI: 10.1103/physrevb.61.13721

Google Scholar

[3] A.A. Shklyaev, M. Ichikawa, Three-dimensional Si islands on Si(001) surfaces, Phys. Rev. B 65 (2001) 045307.

DOI: 10.1103/physrevb.65.045307

Google Scholar

[4] A.A. Shklyaev, M. Shibata, and M. Ichikawa, High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage, Phys. Rev. B 62 (2000) 1540-1543.

DOI: 10.1103/physrevb.62.1540

Google Scholar

[5] L. Zhang, H. Ye, Y.R. Huangfu, C. Zhang, and X. Liu, Densely packed Ge quantum dots grown on SiO2/Si substrate, Appl. Surf. Sci. 256 (2009) 768-772.

DOI: 10.1016/j.apsusc.2009.08.057

Google Scholar

[6] V.S. Lysenko, Yu.V. Gomeniuk, Yu.N. Kozyrev, M. Yu. Rubezhanska, V.K. Sklyar, S.V. Kondratenko, Ye. Ye. Melnichuk, C. Teichert, Effect of Ge nanoislands on lateral photoconductivity of Ge-SiOx-Si structures, Adv. Mat. Res. 276 (2011) 179-186.

DOI: 10.4028/www.scientific.net/amr.276.179

Google Scholar

[7] D.W. Kwak, C.J. Park, Y.H. Lee, W.S. Kim, and H.Y. Cho, Nanotechnology 20 (2009) 055201.

Google Scholar

[8] R. Peibst, J.S. de Sousa, K.R. Hofmann, Determination of the Ge-nanocrystal/SiO2 matrix interface trap density from the small signal response of charge stored in the nanocrystals, Phys. Rev. B 82 (2010) 195415.

DOI: 10.1103/physrevb.82.195415

Google Scholar

[9] Y. Chen, Y.F. Lu, L.J. Tang, Y.H. Wu, B.J. Cho, X.J. Xu, J.R. Dong, W.D. Song, Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 97 (2005) 014913.

DOI: 10.1063/1.1829789

Google Scholar

[10] J. -M. Baribeau, X. Wu, N.L. Rowell, and D.J. Lockwood, Ge dots and nanostructures grown epitaxially on Si, J. Phys.: Cond. Matter 18 (2006) R139.

DOI: 10.1088/0953-8984/18/8/r01

Google Scholar

[11] V.S. Lysenko, Yu.V. Gomeniuk, V.V. Strelchuk, A.S. Nikolenko, S.V. Kondratenko, Yu.N. Kozyrev, M. Yu. Rubezhanska, C. Teichert, Carrier transfer effect on transport in p-i-n structures with Ge quantum dots, Phys. Rev. B 84 (2011) 115425.

DOI: 10.1103/physrevb.84.115425

Google Scholar

[12] G.G. Macfarlane, T.P. McLean, J.E. Quarrington, and V. Roberts, Exciton and phonon effects in the absorption spectra of germanium and silicon, J. Phys. Chem. Solids 8 (1959) 388-392.

DOI: 10.1016/0022-3697(59)90372-5

Google Scholar

[13] F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92 (1953) 1324.

DOI: 10.1103/physrev.92.1324

Google Scholar

[14] A.V. Dvurechenskii, A.V. Nenashev, A.I. Yakimov, Electronic structure of Ge/Si quantum dots, Nanotechnology 13 (2002) 75-80.

DOI: 10.1088/0957-4484/13/1/317

Google Scholar

[15] K. Yasutake, Z. Cheng, S.K. Pang, and A. Rohatgi, Modeling and characterization of interface state parameters and surface recombination velocity at plasma enhanced chemical vapor deposited SiO2–Si interface, J. Appl. Phys. 75 (1994) 2048-(2054).

DOI: 10.1063/1.356307

Google Scholar

[16] M.K. Sheinkman and A. Ya. Shik, Long-term relaxations and persistent conductivity in semiconductors, Fiz. Tekh. Poluprovodn. 10 (1976) 209 [Sov. Phys. Semicond. 10, (1976) 128].

Google Scholar

[17] H.J. Queisser and D.E. Theodorou, Decay kinetics of persistent photoconductivity in semiconductors, Phys. Rev. B 33 (1986) 4027-4033.

DOI: 10.1103/physrevb.33.4027

Google Scholar

[18] H.J. Queisser, Nonexponential relaxation of conductance near semiconductor interfaces, Phys. Rev. Lett. 54 (1985) 234-236.

DOI: 10.1103/physrevlett.54.234

Google Scholar

[19] T.N. Sitenko, I.P. Tyagulskii, V.I. Lyashenko and V.S. Lysenko, Role of surface band bending in residual conductivity formation in epitaxial GaAs films, Physica Status Solidi (a) 30 (1975) 755-763.

DOI: 10.1002/pssa.2210300236

Google Scholar

[20] B.I. Shklovkii and A.L. Efros, in: Electronic properties of Doped Semiconductors (Springer-Verlag, Heidelberg, 1984).

Google Scholar

[21] A.A. Shklyaev, M. Ichikawa, Extremely dense arrays of germanium and silicon nanostructures, Physics Uspekhi 51 (2008) 133-162.

Google Scholar