Effect of the Zeolitic Matrix on the Reduction Process of Cu2+ Cations in Clinoptilolite, Mordenite and Erionite

Article Preview

Abstract:

Three different zeolites (erionite, mordenite and natural clinoptilolite) were used to study influence of zeolite topology on the state of copper during ion-exchange and following reduction in hydrogen flow. This comparative study clearly demonstrates the influence of used zeolite matrices on the process of implantation of copper nanospecies. Starting from the ion-exchange, the alterations in the state of Cu2+ ions start to be evident due to variations of the intensity of charge transfer band. Copper ions start to reduce at specific temperatures depending on the type of zeolite matrix. Copper plasma resonance band change its shape and position for different zeolites. In the case of Cu-CLI samples this band change both the shape and position for different temperature of reduction. These observations permit to suggest that the mechanism of copper ion reduction and agglomeration to form copper nanoparticles noticeably depend on the type of zeolite matrix. This mechanism is more complex for the Cu CLI than for the Cu-MOR and Cu-ERI systems. Copper nanoparticles formed at low temperatures in the case of Cu-CLI samples undergo changes while temperature of reduction grow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

January 2014

Export:

Price:

* - Corresponding Author

[1] P. Kaali, M.M. Pérez-Madrigal, E. Strömberg, R.E. Aune, Gy. Czél, S. Karlsson. The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. eXPRESS Polymer Letters Vol. 5, No. 12 (2011).

DOI: 10.3144/expresspolymlett.2011.101

Google Scholar

[2] I. Rodríguez Iznaga, F. F. Castillón Barraza, A. Simakov, V. Petranovskii. Trimetallic (Cu-Ag-Zn)/Mordenite system obtained via microwave radiation: characterization and catalytic activity in NO reduction. Proceedings of 17th International Zeolite Conference, Moscow, 2013, pp.241-242.

DOI: 10.3390/ma16010221

Google Scholar

[3] Jiancheng Wang, Zhiqiang Liu, Gang Feng, Liping Chang, Weiren Bao. In situ synthesis of CuSAPO-34/cordierite and its selective catalytic reduction of nitrogen oxides in vehicle exhaust: The effect of HF. Fuel 109 (2013) 101–109.

DOI: 10.1016/j.fuel.2012.09.046

Google Scholar

[4] Jasna Hrenovic, Jelena Milenkovic, Tomislav Ivankovic, Nevenka Rajic. Antibacterial activity of heavy metal-loaded natural zeolite. Journal of Hazardous Materials 201–202 (2012) 260– 264.

DOI: 10.1016/j.jhazmat.2011.11.079

Google Scholar

[5] V. Petranovskii, A. Pestryakov, L. Kazantseva, F. Castillon, M. Farias. Formation of catalytically active copper nanoparticles in natural zeolites for complete oxidation of hydrocarbons. Int. J. Modern Phys. B 19 (2005) 2333-2338.

DOI: 10.1142/s0217979205030931

Google Scholar

[6] I. Rodríguez Iznaga, A. Gómez, G. Rodríguez-Fuentes, A. Benítez-Aguilar and J. Serrano-Ballan, Natural clinoptilolite as an exchanger of Ni2+ and NH4+ ions under hydrothermal conditions and high ammonia concentration. Micropor. Mesopor. Mater. 53 (2002).

DOI: 10.1016/s1387-1811(02)00325-6

Google Scholar

[7] R. M. Friedman, J. J. Freeman and F. W. Lytle, Characterization of Cu/Al2O3 catalysts. J. Catal. 55 (1978) 10-28.

Google Scholar

[8] F. Cotton, G. Wilkinson, Avanced Inorganic Chemistry, Wiley–Interscience, New York, (1988).

Google Scholar

[9] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, fourth ed., Harper Collins College Publishers, New York, (1993).

DOI: 10.1021/ed070pa279.1

Google Scholar

[10] Lopez-Bastidas C., Petranovskii V., Machorro R. Optical response of Cu clusters in zeolite template. J. Coll. Interface Sci. 375 (2012) 60-64, 2012. DOI: 10. 1016/j. jcis. 2012. 02. 036.

DOI: 10.1016/j.jcis.2012.02.036

Google Scholar

[11] Lopez-Bastidas C., Smolentseva, E., Machorro R., Petranovskii V. Plasmon features of coinage metal nanoparticles supported on zeolites. Plasmonics (2013), in print.

DOI: 10.1007/s11468-013-9571-5

Google Scholar

[12] I. Rodríguez Iznaga, V. Petranovskii, G. Rodríguez Fuentes, C. Mendoza and A. Benítez Aguilar. Exchange and reduction of Cu2+ ions in clinoptilolite Journal of Colloid and Interface Science. 316 (2007) 877-886.

DOI: 10.1016/j.jcis.2007.06.021

Google Scholar

[13] M.A. Hernandez, V. Petranovskii, M. Avalos, R. Portillo, F. Rojas, V.H. Lara. Influence of the Si/Al framework ratio on the microporosity of dealuminated mordenite as determined from N-2 adsorption, Separation Sci. Technol., 41 (9) (2006).

DOI: 10.1080/01496390600674901

Google Scholar

[14] M.A. Hernandez, F. Rojas, L. Corona, V.H. Lara, R. Portillo, M.A. Salgado, V. Petranovskii. Evaluación de la porosidad de zeolitas naturales por medio de curvas diferenciales de adsorción. Rev. Int. Contam. Ambient. Vol. 21 (2005) 71-81.

Google Scholar

[15] A. Lashkul, I.V. Pleshakov, N.V. Glebova, A.A. Nechitailov, Yu.I. Kuzmin, V.V. Matveev, E.N. Pyatyshev, A.N. Kazakin, A.V. Glukhovskoi. Investigation of composite structure of magnetically ordered material–semiconductor composite based on cobalt and porous silicon. – Technical Physics Letters, Vol. 37, No. 7 (2011).

DOI: 10.1134/s106378501107025x

Google Scholar

[16] C. Baerlocher, L. B. McCusker, and D. H. Olson (eds. ), Atlas of Zeolite Framework Types, 6th Ed., Elsevier, Amsterdam, (2007).

Google Scholar