Kinetics and Thermodynamics of Nanostructured Mg-Based Hydrogen Storage Materials Synthesized from Metal Nanoparticles

Article Preview

Abstract:

Mg, Ni, Co, Cu and Fe nanoparticles with a particle size of 30-300 nm were synthesized by hydrogen plasma metal reaction method. Nanostructured Mg-based hydrogen storage materials (Mg-H, Mg-Ni-H, Mg-Co-H, Mg-Cu-H and Mg-Fe-H systems) were synthesized from these metal nanoparticles. In this work, the kinetic and thermodynamic properties of these nanostructured hydrogen storage materials were studied. It was found that nanostructure could significantly enhance the hydrogen absorption kinetics but the thermodynamics (desorption enthalpy and entropy) does not change with downsizing in the size range of 50 to 300 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-192

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] J.J. Reilly, R.H. Wiswall, Inorganic Chemistry, 6 (1967) 2220-2223.

Google Scholar

[2] H. Shao, G. Xin, J. Zheng, X. Li, E. Akiba, Nano Energy, 1 (2012) 590-601.

Google Scholar

[3] B. Delhomme, A. Lanzini, G.A. Ortigoza-Villalba, S. Nachev, P. de Rango, M. Santarelli, P. Marty, P. Leone, Int J Hydrogen Energy, 38 (2013) 4740-4747.

DOI: 10.1016/j.ijhydene.2013.01.140

Google Scholar

[4] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int J Hydrogen Energy, 32 (2007) 1121-1140.

Google Scholar

[5] H. Shao, X. Li, Nanotechnology, Submitted (2013).

Google Scholar

[6] H.Y. Shao, T. Liu, X.X. Li, Nanotechnology, 14 (2003) L1-L3.

Google Scholar

[7] H.Y. Shao, T. Liu, Y.T. Wang, H.R. Xu, X.G. Li, J Alloy Compd, 465 (2008) 527-533.

Google Scholar

[8] H.Y. Shao, H.R. Xu, Y.T. Wang, X.G. Li, J Solid State Chem, 177 (2004) 3626-3632.

Google Scholar

[9] H.Y. Shao, Y.T. Wang, H.R. Xu, X.G. Li, J Solid State Chem, 178 (2005) 2211-2217.

Google Scholar

[10] H.Y. Shao, H.R. Xu, Y.T. Wang, X.G. Li, Nanotechnology, 15 (2004) 269-274.

Google Scholar

[11] H.Y. Shao, Y.T. Wang, H.R. Xu, X.G. Li, Mat Sci Eng B-Solid, 110 (2004) 221-226.

Google Scholar

[12] H. Shao, M. Felderhoff, F. Schüth, Int J Hydrogen Energy, 36 (2011) 10828-10833.

Google Scholar

[13] H. Shao, M. Felderhoff, F. Schüth, C. Weidenthaler, Nanotechnology, 22 (2011).

Google Scholar

[14] J.F. Stampfer, C.E. Holley, J.F. Suttle, J Am Chem Soc, 82 (1960) 3504-3508.

Google Scholar

[15] J.J. Reilly, R.H. Wiswall, Inorganic Chemistry, 7 (1968) 2254-2256.

Google Scholar

[16] R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, J Am Chem Soc, 127 (2005) 16675-16680.

DOI: 10.1021/ja054569h

Google Scholar