Synthesis of Polythiophene and its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors

Article Preview

Abstract:

A highly porous polythiophene (PTh) nanofibers were synthesized by surfactant assisted dilute polymerization method using FeCl3 as oxidant. They were confirmed by XRD and FTIR analysis. The surface morphology of PTh was done by scanning electron microscopy (SEM). The prepared polythiophene nanofibers were subjected to calcination under inert gas atmosphere at 1400oC for 2 hrs to get carbonaceous PTh nanofibers. The asymmetric supercapacitor was assembled using PTh nanofibers as the cathode and carbonaceous PTh nanofibers as the anode in 6M KOH electrolyte. The electrochemical supercapacitor performances were carried out to find out the specific capacitance, energy density and power density of the cell. The above results confirmed that the prepared PTh nanofibers and carbonaceous PTh nanofibers could be used as electrode materials for asymmetric supercapacitor applications. Keywords: Polythiophene, Dilute polymerization method, Carbonaceous material, Asymmetric supercapacitor, Specific capacitances

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-157

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] P. Thounthong, S. Raël, B. Dava, Energy management of fuel cell/battery/supercapacitorhybrid power source for vehicle applications, J. Power Sources 193(2009)376–385.

DOI: 10.1016/j.jpowsour.2008.12.120

Google Scholar

[2] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483–2498.

DOI: 10.1016/s0013-4686(00)00354-6

Google Scholar

[3] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (2011) 4828–4850.

DOI: 10.1002/adma.201100984

Google Scholar

[4] W. Xing, C.C. Huang, S.P. Zhuo, X. Yuan, G.Q. Wang, D.H. Jurcakova, Z.F. Yan, G.Q. Lu, Hierarchical porous carbons with high performance for supercapacitor electrodes, Carbon 47 (2009) 1715 –1722.

DOI: 10.1016/j.carbon.2009.02.024

Google Scholar

[5] X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphenefilms: Towards the next generation of high performance supercapacitors, Adv. Mater. 23(2011) 2833–2838.

DOI: 10.1002/adma.201100261

Google Scholar

[6] F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube graphene networks for high performance capacitance, Chem. Mater. 23(2011) 4810–4816.

DOI: 10.1021/cm2021214

Google Scholar

[7] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Letters 6 (2006) 2690– 2695.

DOI: 10.1021/nl061576a

Google Scholar

[8] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, J. Phys. Chem. C 113 ( 2009) 14020–14027.

DOI: 10.1021/jp8113094

Google Scholar

[9] Y. F. Yuan, X. H. Xia, J. B. Wu, X. H. Huang, Y. B. Pei, J. L. Yang, S. Y. Guo, Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application, Electrochem. Commun. 13(2011).

DOI: 10.1016/j.elecom.2011.07.012

Google Scholar

[10] D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor, J. Power Sources 185 (2008) 1563–1568.

DOI: 10.1016/j.jpowsour.2008.08.032

Google Scholar

[11] Y. Li, K. Zhao, X. Du, Z. Wang, X. Hao, S. Liu, G. Guan, Capacitances behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method, Synth. Met. 162 (2012) 107–113.

DOI: 10.1016/j.synthmet.2011.11.019

Google Scholar

[12] D.P. Dubal, S.V. Patil, A.D. Jagadale, C.D. Lokhande, Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application, J. Alloy Compd. 509 (2011) 8183–8188.

DOI: 10.1016/j.jallcom.2011.03.080

Google Scholar

[13] A. Laforgue, P. Simon, C. Sarrazin, J-F. Fauvarque, Polythiophene-based supercapacitors, J. Power Sources 80 (1999) 142–148.

DOI: 10.1016/s0378-7753(98)00258-4

Google Scholar

[14] K.S. Ryu, Y-G. Lee, Y-S. Hong, Y.J. Park, X. Wu, K.M. Kim, M.G. Kang, N-G. Park, S.H. Chang, Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, Electrochim. Acta 50 (2004) 843–847.

DOI: 10.1016/j.electacta.2004.02.055

Google Scholar

[15] H. Guo, Q. Gao, Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources 186 (2009) 551–556.

DOI: 10.1016/j.jpowsour.2008.10.024

Google Scholar

[16] E. Iyyamperumal, S. Wang, L. Dai, Vertically aligned BCN nanotubes with high capacitance, ACS Nano 6 (2012) 5259–5265.

DOI: 10.1021/nn301044v

Google Scholar

[17] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Nitrogen enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater. 19 (2009) 1800–1809.

DOI: 10.1002/adfm.200801100

Google Scholar

[18] A. Gok, M. Omastova, A.G. Yavuz, Synthesis and characterization of polythiophenes prepared in the presence of surfactants, Synth. Met. 157 (2007) 23–29.

Google Scholar

[19] F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/Polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries, J. Phys. Chem. C 115 (2011) 6057–6063.

DOI: 10.1021/jp1114724

Google Scholar

[20] M.E. Nichoa, H. Hub, C. Lopez-Matab, J. Escalantec, Synthesis of derivatives of polythiophene and their application in an electrochromic device, Sol. Energy Mater. Sol. Cells 82 (2004) 105–118.

Google Scholar

[21] W. Kim, M.Y. Kang, J.B. Joo, N.D. Kim, I.K. Song, P. Kim, J.R. Yoon, J. Yi, Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double layer capacitors, J. Power Sources 195 (2010).

DOI: 10.1016/j.jpowsour.2009.09.080

Google Scholar

[22] M. Yang, B. Cheng, H. Song, X. Chen, Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta 55 (2010) 7021–7027.

DOI: 10.1016/j.electacta.2010.06.077

Google Scholar